Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
MH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreUrinary tract infections (UTIs) mean microbial pathogens in the urethra or bladder (lower urinary tract). Important risk factors for recurrent UTI include obstruction of the urinary tract, use of a bladder catheter or a suppressed immune system. This study aims to isolate and identify bacteria from patients with TCC-bladder cancer or patients with a negative cystoscope and estimate antibiotic susceptibility patterns and evaluate some of the virulence factors. From a total of 62 patients with TCC-BC or negative cystoscope, only 35 favorable bacterial growths were obtained, including Escherichia coli (UPEC), a significant bacterial isolate, and Stenotrophomonas maltophilia. The percentage of multi drug-resistance bacteria
... Show MoreThe activity of Alanine aminopeptidase( AAP ) was measured in the urine of healthy and urinary tract cancer patients , the results showed higher activity of (AAP) in patients compared to healthy . AAP was Purified from the urine of healthy and patients with urinary tract cancer by dialysis and gel filtration (Sephadex G – 50) and two isoenzymes of (AAP) were separated from urine by using ion-exchang resin (DEAE – Sephadex A – 50 ) in previous study. The kinetics studies showed that both isoenzymes I and II obeyed Michaelis – Menton equation . with optimal concentration of alanine-4-nitroanilide as substrate for isoenzymes I and II which was (2 x 10-3 mol/L ). The two isoenzymes obeyed Arrhenius equation up two 37° C and t
... Show MoreCD40 is a type 1 transmembrane protein composed of 277 amino acids, and it belongs to the tumor necrosis factor receptor (TNFR) superfamily. It is expressed in a variety of cell types, including normal B cells, macrophages, dendritic cells, and endothelial cells, as a costimulatory molecule. This study aims to summarize the CD40 polymorphism effect and its susceptibility to immune-related disorders. The CD40 gene polymorphisms showed a significant association with different immune-related disorders and act as a risk factor for increased susceptibility to these diseases.
The study aims at investigating the effectiveness of the Virtual Library Technology, in developing the achievement of the English Language Skills in the Center of Development and Continuous Education, in comparison with the individual learning via personal computer to investigate the students' attitude towards the use of both approaches. The population of the study includes the participants in the English Language course arranged in the Center. The sample includes 60 students who were randomly chosen from the whole population (participants in English Courses for the year 2009-2010). The sample is randomly chosen and divided into two experimental groups. The first group has learned through classroom technology; while the other group has l
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show More