Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
The holmium plasma induced by a 1064-nmQ-switched Nd:YAG laser in air was investigated. This work was done theoretically and experimentally. Cowan code was used to get the emission spectra for different transition of the holmium target. In the experimental work, the evolution of the plasma was studied by acquiring spectral images at different laser pulse energies (600,650,700, 750, and 800 mJ). The repetition rates of (1Hz and 10Hz) in the UV region (200-400 nm). The results indicate that, the emission line intensities increase with increasing of the laser pulse energy and repetition rate. The strongest emission spectra appeared when the laser pulse energy is 800mJ and 10 Hz repetition rate at λ= 345.64nm, with the maximum intensi
... Show MoreBackground: Schneiderian first rank symptoms are
considered highly valuable in the diagnosis of
schneideria.
They are more evident in the acute phase of the
disorder and fading gradually with time. Many studies
have shown that the rate of these symptoms are
variable in different countries and are colored by
cultural beliefs and values.
Objectives: To find out the rate of Schneiderian first
rank symptoms among newly diagnosed schizophrenic
patients, to assess which symptom(s) might
predominate in those patients, and to find out if there
is/are any correlation(s) between the occurrence of
these symptoms and the sex of the patients.
Methods: Out of twenty-four patients with no past
psychiatric hi
In this paper, the dynamic of quark and anti-quark interaction has been used to study the production of photons in the annihilation process based on the theory of chromodynamic. The rate of the photon is to be calculated for charm and anti-strange interaction c→γg system with critical temperature 113 and 130 MeV and photon energy GeV/c. Here the critical temperature, strength coupling and photons energy are assumed to be affected dramatically on the rate of photons emission of state interaction c, which can form gluon possible structures and photon emission state. The decreased photons emission yields with increased strength couple of quarks reaction due to increase critical temperature from 113 MeV to 130 MeV were predicted. We
... Show MoreObjective: To identified the relationship between general and spinal Anesthesia upon breastfeeding and (demographic &reproductive) : Comparative Study. Methodology: The present study employs a descriptive comparative design held at the labor and delivery room , operational room for cesarean section and maternity word in maternity department at Al Emamain Al Kadhamain Medical City in Baghdad city. Data collection was initiated on 2nd January to end of March /2014. Purposive sample consisted of (150) mother and her neonate, The study sample divided into three groups:(50) under general anesthesia , (50) under
The research aims to analyze the impact of exchange rate fluctuations (EXM and EXN) and inflation (INF) on the gross domestic product (GDP) in Iraq for the period 1988-2020. The research is important by analyzing the magnitude of the macroeconomic and especially GDP effects of these variables, as well as the economic effects of exchange rates on economic activity. The results of the standard analysis using the ARDL model showed a long-term equilibrium relationship, according to the Bound Test methodology, from explanatory (independent) variables to the internal (dependent) variable, while the value of the error correction vector factor was negative and moral at a level less than (1%). The relationship bet
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreCurrent research aims to find out:
- Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
- Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.
In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:
- There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More