Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
Background: This study aimed to determine the value of Beta angle for a sample of Iraqi adults with class I skeletal and dental relations and to verify the existence of sexual dimorphism and to find out the relation between this angle and other craniofacial measurements. Materials and Methods: Sixty dental students (23 males and 37 females) with an age ranged between 20-31 years old and having class I skeletal and dental relations were chosen for this study. Each student was subjected to clinical examination and digital true lateral cephalometric radiograph. The radiographs were analyzed using AutoCAD 2007 computer program to measure the angular and linear variables. Descriptive statistics were obtained for the measurements for both genders
... Show MoreBackground: The present in-vitro study was undertaken to evaluate and compare fracture resistance of weakened endodontically treated premolars with class II MOD cavities restored with different bulk fill composite restorations (EverX posterior, Alert, Tetric EvoCeram Bulk Fill, and SDR). The type and mode of fracture were also assessed for all the experimental groups. Materials and Method: Forty-eight human adult maxillary premolar teeth were selected for this study. Standardized extensive class II MOD cavities with endodontic treatment were prepared for all teeth, except those that were saved as intact control. The teeth were divided into six groups of eight teeth each (n=8): (Group 1) intact control group, (Group 2) unrestored teeth with
... Show MoreObjectives: To study the prevalence of rs1799964 (-1031 T/C) and rs361525 (- 238 G/A) SNPs and their effect on the disease activity, severity, and cytokines production in newly diagnosed Iraqi rheumatoid arthritis patients. Patients and Methods: sixty-three patients were diagnosed by a specialist physician while attending the rheumatology unit and twenty control participated. The inflammatory markers were measured and PCR amplification and sequencing were performed to demonstrate TNF-α SNPs. Results: Regarding (-1031 C/T) SNP, the TT genotype and allele C were significantly present in the controls, and the CT genotype was distributed significantly in the patients. The TT genotype was mostly distributed in the mild-moder
... Show MoreThis research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show MoreBACKGROUND: Hepatocyte growth factor (HGF) is a proangiogenic factor that exerts different effects over stem cell survival growth, apoptosis, and adhesion. Its impact on leukemogenesis has been established by many studies. AIM: This study aimed to determine the effect of plasma HGF activity on acute myeloid leukemia (AML) patients at presentation and after remission. PATIENTS AND METHODS: This was a cross-sectional prospective study of 30 newly-diagnosed, adult, and AML patients. All patients received the 7+3 treatment protocol. Patients’ clinical data were taken at presentation, and patients were followed up for 6 months to evaluate the clinical status. Plasma HGF levels were estimated by ELISA based methods in the pa
... Show MoreThe preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show MoreRe-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c
تم تحضير ثلاث معقدات جديدة Ni (II)و Cu (II) و Zn (II) باستخدام الليكند المحضر الجديد من تفاعل حامض مالونيك ثنائي هيدرازايد مع 2-بيريدين كربوكسالديهايد. حيث شخصت المعقدات لمحضرة وكذلك الليكند باستخدام تقنيات مختلفة مثل FT-IR و UV-Vis و Mass و 1H-NMR و 13C-NMR وتحليل العناصر CHN و تقدير محتوى الكلور والموصلية المولارية والحساسية المغناطيسية والامتصاص الذري لتشخيص هذه المركبات. لكل معقد محضر جديد من النيكل والنحاس والزنك ، كشفت نتائج ا
... Show MoreSome new complexes of 4-(5-(1,5-dimethyl-3-oxo-2-phenyl pyrazolidin-4- ylimino)-3,3-dimethyl cyclohexylideneamino) -1,5- dimethyl-2- phenyl -1H- pyrazol -3(2H) –one (L) with Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) were prepared. The ligand and its metal complexes were characterized by phisco- chemical spectroscopic techniques. The spectral data were suggested that the (L) as a neutral tetradentate ligand is coordinated with the metal ions through two nitrogen and two oxygen atoms. These studies revealed Octahedral geometries for all metal complexes, except square planar for Pd(II) complex. Moreover, the thermodynamic activation parameters, such as ?E*, ?H, ?S, ?G and K are calculated from the TGA curves using Coa
... Show MoreThe inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show More