Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
This study aims to identify the amount of the effect of the ability to learn the individuals within the organization on the accumulation of intellectual capital and the role it plays in improving the performance of the organization, and to achieve that, the researcher designed a questionnaire to collect data and information from the surveyed respondents and analyzed using SPSS software, the study concluded after testing hypotheses to have a direct impact between the capacity for organizational learning and the accumulation of intellectual capital, which in turn affects the accumulation of intellectual capital as a positive and direct impact on the performance of the organization, al
... Show MoreAbstract: The research covered five chapters: So, the first chapter definition of the research is from the introduction to the research and its importance, as the importance of the research lies in an expression of the reality of e-learning as it is one of the new patterns of the educational process and its role in enhancing communication and interconnectedness between the learners from the students ’point of view Physical Education and Sports Sciences for Girls, University of Baghdad, as for the problem The research was, and through the researcher’s acquaintance with many previous studies, references and sources, and being a student at the College of Physical Education and Sports Sciences - University of
... Show MoreThe study aimed to evaluate the distance learning experience in light of the spread of the Corona pandemic - Covid19 - from the teachers' point of view in Islamic Science Institutes in the Sultanate of Oman, which was applied during the second semester of the 2019/2020 academic year. The study sample consisted of (77) teachers from The Islamic Science Institutes of The Sultan Qaboos Higher Center for Culture and Science. The researchers prepared a questionnaire to evaluate the reality of the experience. The study results revealed, the followings: The Department of Educational Affairs and Training at The Sultan Qaboos Higher Center for Culture and Science was able to a moderate degree in the rapid transition to a distance learning s
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreThe railways network is one of the huge infrastructure projects. Therefore, dealing with these projects such as analyzing and developing should be done using appropriate tools, i.e. GIS tools. Because, traditional methods will consume resources, time, money and the results maybe not accurate. In this research, the train stations in all of Iraq’s provinces were studied and analyzed using network analysis, which is one of the most powerful techniques within GIS. A free trial copy of ArcGIS®10.2 software was used in this research in order to achieve the aim of this study. The analysis of current train stations has been done depending on the road network, because people used roads to reach those train stations. The data layers for this st
... Show MoreThis research aims to examine the effectiveness of a teaching strategy based on the cognitive model of Daniel in the development of achievement and the motivation of learning the school mathematics among the third intermediate grade students in the light of their study of "Systems of Linear Equations”. The research was conducted in the first semester (1439/1440AH), at Saeed Ibn Almosaieb Intermediate School, in Arar, Saudi Arabia. A quasi-experimental design has been used. In addition, a (pre & post) achievement test (20 Questions) and a (pre & post) scale of learning motivation to the school mathematics (25 Items) have been applied on two groups: a control group (31Students), and an experimental group (29 Students). The resear
... Show MoreAlkaloids are regarded as important nitrogen-containing chemical compounds that serve as a rich source for discovering and developing new drugs where most plant-origin alkaloids have antiproliferation effects on different kinds of cancers. Alkaloids’ continence of Calotropis procera leaves are detected by two biochemical alkaloid reagents. Also GC-MS analysis for leaf alkaloid extract was done that showed the existence of one type of alkaloid compound at retention time12.8min detected as colchicine (C22H25N06( by comparing it with colchicine standard reference (Sigma Aldrich) with M.wt 399g/mol and percentage area 7.1%. Furthermore, identification, separation, and purification
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show More