Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
This study deals with examining UCAS students’ attitudes in Gaza towards learning Arabic grammar online during the Corona pandemic. The researcher has adopted a descriptive approach and used a questionnaire as a tool for data collection. The results of the study have statistically shown significant differences at the level of "0.01" between the average scores of students in favor of the students of the humanities specializations. It has also been found that the students’ attitudes at the Department of Humanities and Media towards learning Arabic grammar online are positive. Additionally, the results revealed no statistical significant differences due to the variable of UCAS students’ scientific qualifications. The results stressed
... Show MoreDelays occur commonly in construction projects. Assessing the impact of delay is sometimes a contentious
issue. Several delay analysis methods are available but no one method can be universally used over another in
all situations. The selection of the proper analysis method depends upon a variety of factors including
information available, time of analysis, capabilities of the methodology, and time, funds and effort allocated to the analysis. This paper presents computerized schedule analysis programmed that use daily windows analysis method as it recognized one of the most credible methods, and it is one of the few techniques much more likely to be accepted by courts than any other method. A simple case study has been implement
This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreThe main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im
... Show MoreStream ciphers are an important class of encryption algorithms. There is a vast body of theoretical knowledge on stream ciphers, and various design principles for stream ciphers have been proposed and extensively analyzed. This paper presents a new method of stream cipher, that by segmenting the plaintext into number of register then any of them combined to any other by using combination logic circuit (And, OR, JK, NOT, XOR), then using variant register in length as a key which provides security enhancement against attacks and then compare the strength of this method with RSA by calculaing the time necessary to get the original text by using the genetic algorithm. And the way that ha
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreThe implementation of the concept of project scheduling in the organizations generally requires a set of procedures and requirements, So, most important of all is the understanding and knowledge of the tools and techniques which are called the methods of scheduling projects. Consequently, the projects of the municipality administration in the holy governorate of Karbala suffer from the problem of delaying their projects and chaos in the ways of implementation. To provide assistance to this directorate and to demonstrate how to schedule projects using one of the advanced scientific methods that proved their ability to schedule any project and its potential to accelerate the time of completion, as well as ease of use and effectiven
... Show MoreIntroduction: The association between acute stroke and
renal function is well known. The aim of this study is to
know which group of patients with acute stroke is more
likely to have undiagnosed Chronic Kidney Disease and
which risk factors are more likely to be associated with.
Methods:We studied 77 patients who were diagnosed to
have an acute stroke.Patients were selected between
April2011andJune 2011 using the " 4-variable
Modification of
Diet in Renal Disease Formula " which estimates
Glomerular Filtration Rate using four variables :serum
creatinine ,age ,race and gender.
Results :The study included 38 male and 39 females
patients ,aged (35-95) years. Glomerular Filtration Rate in
patients wi