Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreAbstract
The current research aims at identifying any of the dimensions of organizational learning abilities that are more influential in the knowledge capital of the university and the extent to which they can be applied effectively at Wasit University. The current research dealt with organizational learning abilities as an explanatory variable in four dimensions (Experimentation and openness, sharing and transfer of knowledge, dialogue, interaction with the external environment ), and knowledge capital as a transient variable, with four dimensions (human capital, structural capital, client capital, operational capital). The problem of research is the following questio
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreThe current research aims to find out ( the effectiveness of the structural model of learning in the acquisition of geographical concepts at the first grade average students ) , and achieving the goals of research has been formulating the null hypothesis of the following :
" There is no difference statistically significant when Mistoi (0.5 ) between the mean scores of the collection of students in the experimental group that is studying the general geographical principles " Bonmozj constructivist learning " and the mean scores of the control group , which is considering the same article ," the traditional way " to acquire concepts.
The researcher adopted th
... Show MoreThe research abstract included introduction and the importance of the research, also included display of the problem represented by weakness for the players when performing some of the basic skills in badminton and the shuttle not reaching to the back corners of the court which gives the player the opportunity to win through applying the pressure on the opponent and make him away from the control center(T) which definitely required level of a collection muscular strength contributed in performance perhaps this related to a number of reasons related with weakness in physical changes especially explosive and characterized by speed forces for the badminton players and be acquainted with them and knowing the extent of their effect in performanc
... Show MoreBiogas is one of the most important sources of renewable energy and is considered as an environment friendly energy source. The major goal of this research is to see if rice husk (Rh) waste and pomegranate peels (PP) waste are suitable for anaerobic digestion and what effect NaOH pre-treatment has on biogas generation. Rice husk and pomegranate peels were tested in anaerobic digestion under patch anaerobic conditions as separate wastes as well as blended together in equal proportions. The cumulative biogas output for the blank test (no pretreatment) was 1923 and 2526 ml, respectively using a single rice husk (Rh) and pomegranate peel (PP) substrates. The 50% rice husk digestion and 50% of pomegranate peels for blank test gave the result 224
... Show More This research aims to estimate stock returns, according to the Rough Set Theory approach, test its effectiveness and accuracy in predicting stock returns and their potential in the field of financial markets, and rationalize investor decisions. The research sample is totaling (10) companies traded at Iraq Stock Exchange. The results showed a remarkable Rough Set Theory application in data reduction, contributing to the rationalization of investment decisions. The most prominent conclusions are the capability of rough set theory in dealing with financial data and applying it for forecasting stock returns.The research provides those interested in investing stocks in financial
... Show MoreThis study was performd on 50 serum specimens of patients with type 2 diabetes, in addition, 50 normal specimens were investigated as control group. The activity rate of LAP in patients (560.46 10.504) I.U/L and activity rate of LAP in healthy(10.58 4.39)I.U/L.The results of the study reveal that Leucine aminopeptidase (LAP) activity of type 2 diabetes patient s serum shows a high signifiacant increase (p < 0.001) compare to healthy subjects. Addition preparation leucine amide as substrate of LAP, identification melting point and spectra by FTIR. K
The present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant
... Show MoreThis paper is based on the Sentinel-2 satellite data: the thermal, red, and NIR bands. The Babylon city was chosen in this study for different reasons: its location in the middle of Iraq and it represents the largest capitals of the Mesopotamia civilization in the word. The Land Surface Temperature (LST) was determined using a method that incorporates remote sensing, geographic information systems, and statistics. This process has made it possible to monitor the relationship between land usage and the land surface temperature for four seasons in the year 2021. The mapswere processed and analyzed by using ArcGIS software. Five maps of the LST were constructed. Each map represents diffe