Abstract: Recombinant Newcastle disease virus (rNDV) has shown an anticancer effect in preclinical studies, but has never been tested in a lung cancer models. In this study we explored the anticancer activity of genetically modified NDV expressing IL-2-P53 (rClone30–IL-2-P53) in lung cancer model. We have cloned IL-2 and P53 genes and inserted them in the viral genome of New Castle Disease Virus to create a genetically modified rNDV- IL-2-P53 virus and tested the anti-tumor activity of the new virus in vitro on different types of cancer cell lines by MTT assay. TheIL-2 and P53 gene were successfully cloned and inserted into the viral genome by using a Mlu I and Sfi I endonucleases, viral vector was constructed correctly and successfully; sequencing results also showed that the recombinant plasmid was successfully constructed resulting in the formation of rClone30 NDV expressing both IL2 and P53 gene. In this study, P53 and IL-2 gene were successfully constructed into the NDV genome, by the use of reverse genetics technology, then successfully rescue of all recombinant rNDVclone30s and got high titer recombinant viruses. Keywords: rNDV, IL-2, P53, lung cancer, MTT assay
The oncolytic viruses are promising form of cancer therapy which is based on the selectively killing of the cancer cells. This study was aimed to investigate the role of Newcastle disease virus (NDV) Iraqi strain AD2141 in apoptosis. Firstly, the virulence of AD2141 was detected in embryonated chicken eggs after 48hrs of infection. It was observed a hemorrhage in the skin of infected embryos that led to death. Then, the ability of this strain for regression cancer cell lines was examined. By using cytotoxicity test, it was found 128 HAU/ml of AD2141 had a potent inhibition against growth of RD and AMN3 after 72hrs of exposure time; the inhibition rate was 86.8% and 86.98% respectively. Moreover, the apoptotic activity of AD2141 was exami
... Show MoreHematological malignancies are important diseases that need more powerful therapeutics. Even with current targeting therapies, such as rituximab and other chemotherapeutic agents, there is a need to develop new treatment strategies. Combination therapy seems the best option to target the tumor cells by different mechanisms. Virotherapy is a very promising treatment modality, as it is selective, safe, and causes cancer destruction. The Iraqi strain of Newcastle disease virus (NDV) has proved to be effective both in vitro and in vivo. In the current work, we tested its ability on anti-hematological tumors and enhanced current treatments with combination therapy, and studied this combination using Chou–Talalay analysis. p53 concentration was
... Show MoreHematological malignancies remain one of the leading causes of death worldwide despite advances in cancer therapeutics. Newcastle disease virus (NDV) is a member of Paramyxoviridae that elicits considerable interest as an anticancer agent because it can replicate up to 10 000 times faster in human cancer cells than in most normal cancer cells. Several NDV strains reportedly induce the cytolysis of cancerous cell lines. The attenuated Iraqi strain (AMHA1) of NDV is a novel oncolytic agent with promising antitumor characteristics, including apoptosis induction. This study aimed to evaluate the ability of the AMHA1 NDV strain to induce apoptotic cell death in hematological tumors through caspase-dependent or independent apoptotic pathways. The
... Show MoreObjective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou–Talalay analysis. Results: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 617
... Show MoreThe aquatic crude extract of Silybum marianum dry grains prepared by melting them in distil water by the method of soak and shake. The effect of Silybum marianum crude extract studied in vitro on three tumor cell line the Hep-2, AMN-3 and RD for 24, 48 and 72 hours of exposure, and one cell line of normal cells REF for 72 hr exposure. The results showed that the prescence of toxic effect of the aquatic crude extract on the cell lines of Hep-2, AMN-3 and RD at 10 and 100 µg/ ml upto the higher concentrations when they exposed to the extract for 48 hr. as compared with the control treatment, and when the exposure period increased to 72 hr. the toxic effect started at low concentrations (5 and 10 µg/ ml) as compared with the control g
... Show MoreA synthesis series of new heterocyclic derivatives (A2-A7) (pyrrole, pyridazine, oxazine and imidazol) derived from 4-acetyl-2,5-dichloro-1-(3,5-dinitrophenyl)-1H-pyrrole-3-carboxylate(A1) have been synthesised. Synthesis of compound (A2) by the reaction of starting material (A1) with hydroxyl amine hydrochloride in the presence of pyridine. Compound (A2) was reacted with hydrazine hydrate in dry benzene to give (A3) derivative. The compound )A3( deals with sodium nitrite to give diazonium salt, and the reaction diazonium salt with ethyl acetoacetate to produce compound (A4). To a mixture of compound (A4) and hydroxyl amine with sttired to yield (A5).Compound (A6) was prepared by reaction compound (A4) with thiosemicarbazide in presence
... Show MoreThe cytotoxic effect of catechol was examined in two human cancer cell lines, Epidermoid larynx carcinoma (Hep- 2), Cerebral glioblastoma multiforme (AMGM-5) and Murine mammary adenocarcinomacell (AMN3) treated with half concentrations of catechol (1000, 500, 250, 125, 62.5 and 32.25 μM) for 72 hr. The get hold of results showed catechol have a toxic effect of the cell viability of three types of cell lines after 72h of exposure, the toxicity was dependent on catechol concentrations and/or autoxidation for quinines formation, there were a marked decreased of cell viability in a dose dependent manner in all cell line types. Inhibition concentration of catechol for 50% of cell viability (IC50) were calculated, they were at 581.5 μM, 478 μM
... Show More