Preferred Language
Articles
/
IBjh8JUBVTCNdQwCx4CP
Effect of Elevated Temperature on Microstructure and Mechanical Properties of Hot-Rolled Steel
...Show More Authors

The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critical role, significantly influencing the mechanical properties with an impact ratio of 62%. The microstructural analysis displayed that higher temperatures and longer soaking times resulted in the formation of coarser ferrite and pearlite grains, contributing to a decrease in strength and an increase in ductility. The optimum process condition - 650 °C for 60 min - produced the highest values for tensile strength (400.32 MPa), elongation (36.78%) and yield strength (288.52 MPa). The study also highlighted the temperature-dependent nature of the mechanical behavior of hot-rolled steel. While tensile strength and yield strength initially increase with temperature, prolonged exposure, particularly at 600 °C and 750 °C, results in significant grain coarsening and a corresponding degradation of these properties. Conversely, elongation improves at moderate temperatures (150 °C to 300 °C) but decreases with prolonged exposure, especially at higher temperatures. These findings underscore the importance of precise control of thermal processing parameters to optimize the mechanical properties of hot-rolled steel. The findings offer significant insights that can be leveraged to optimize material performance in industrial applications, where thermal exposure is a critical consideration.

Scopus Crossref
View Publication
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of Mixed Convection in an Enclosure with a Cold Movable Top Wall and Hot Bottom Wall
...Show More Authors

 

Mixed convection heat transfer to air inside an enclosure is investigated experimentally. The bottom wall of the enclosure is maintained at higher temperature than that of the top wall which keeps in oscillation motion, whereas the left and right walls are well insulated. The differential temperature of the bottom and top walls changed several times in order to accurately characterize the temperature distribution over a considerable range of Richardson number. Adjustable aspect ratio box was built as a test rig to determine the effects of Richardson number and aspect ratio on the flow behavior of the air inside the enclosure. The flow fields and the average Nusselt number profiles were presented in this wo

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 01 1990
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
THE INFLUENCE OF TEMPERATURE AND HUMIDITY ON THE BIOLOGY OF THE HOUSE DUST MITE DERMATOPHAGOIDES PTERONYSSINUS TROUESSART 1897 (ACARI : PYROGLYPHIDAE)
...Show More Authors

Duration of each developmental stage of the house dust mite Dermatophagoides pteronyssinus together with the mortality percentage were observed at a combination of five different temperatures namely 20C°, 22.5C°, 25C°, 27.5C° and 30C° and four different humidities namely 55%, 75%, 85% and 95% r. h. Results showed that temperature had the greatest effect on the life cycle period. The higher the temperature the shorter the life cycle was aid versa verea. On the other hand, humidity seems to be less effectiveness, though at the higher temperature and humidity no development was occured. Mortality among all temperatures and humidities appeared nearly the same, but at higher temperature and higher humidity and because of mould g

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Efficiency of Poly Nicotine Amide as Anticorrosion Coating on Stainless Steel and Study Its Biological Activity
...Show More Authors

Using an electrochemical polymerization technique at room temperature, poly nicotine amide (PNA) was produced from the monomer nicotine amide (NA) in aqueous solution. The structure of polymer layer generated on the stainless steel surface (316 L) (working electrode) is investigated by Fourier Transmission Infrared Region (FT-IR). The anti-corrosion activity of polymer coating on the stainless steel (SS 316 L) is investigated by electrochemical polarization in 0.20M solution of HCl at 293-323K. The graphene -modified polymer film-coated SS had greater protection efficiency (PE percent) when compared to Nano ZnO -modified polymer film-coated SS. For the corrosion process of SS 316 L, kinetic and thermo-dynamic parameters of activatio

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jul 10 2023
Journal Name
Journal Of Engineering
Analysis and Optimum Design of Self Supporting Steel Communication Tower
...Show More Authors

The present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Corrosion Behavior of Copper and Carbon Steel in Acidic Media
...Show More Authors

The corrosion behavior of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) has been studied. The corrosion inhibition of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) by Ciprofloxacin has been investigated. Specimens were exposed in the acidic media for 7 hours and corrosion rates evaluated by using the weight loss method. The effect of temperature (from 283 ºK to 333 ºK), pH (from 1to 6), inhibitor concentration (10-4 to 10-2) has been studied. It was observed that sulphuric acid environment was most corrosive to the metals because of its oxidizing nature, followed by hydrochloric acid. The rate of metal dissolution increased with incre

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue May 02 2023
Journal Name
Social Science Journal
An Investigation of Microstructure Analysis for World Health Organizatioan Speeches during Covid-19 Pandemic: Adopted Van Dijk Theory
...Show More Authors

Publication Date
Tue Jan 19 2021
Journal Name
Archives Of Civil And Mechanical Engineering
Push-out test of steel–concrete–steel composite sections with various core materials: behavioural study
...Show More Authors

Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co

... Show More
View Publication
Scopus (34)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon Feb 24 2025
Journal Name
Advances In Structural Engineering
Experimental and numerical investigation on the behavior of composite reinforced concrete columns encased by steel section and hybrid GFRP section
...Show More Authors

GFRP was employed in constructions as an alternative to steel, which has many advantages like lightweight, large tensile strength and resist corrosion. Existing researches are insufficient in studying the influence of hybrid reinforced concrete composite columns encased by GFRP I-section (RCCCEG) and I-section steel (RCCCES). In this study twenty one (RC) specimens of a cross-section of 130 mm × 160 mm, with different length (long 1600 mm and short 750 mm) were encased by using I-section (steel and GFRP) and tested under various loading (concentric, eccentric and flexural loads). The test was focused on the influence of many parameters; load-carrying capacity, mode of failure, deformation and drawing an interaction diagram (N-

... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Of Molecular Modeling
Ab initio study of structural, mechanical and electronic properties of 3d transitional metal carbide in cubic rocksalt (rs), zincblende (zb), and cesium chloride (cc) structures by using LDA and GGA Approximation
...Show More Authors

This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d o

... Show More
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Estimating Pitting Corrosion Depth and Density on Carbon Steel (C-4130) using Artificial Neural Networks
...Show More Authors

The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be

... Show More
View Publication Preview PDF
Crossref