The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critical role, significantly influencing the mechanical properties with an impact ratio of 62%. The microstructural analysis displayed that higher temperatures and longer soaking times resulted in the formation of coarser ferrite and pearlite grains, contributing to a decrease in strength and an increase in ductility. The optimum process condition - 650 °C for 60 min - produced the highest values for tensile strength (400.32 MPa), elongation (36.78%) and yield strength (288.52 MPa). The study also highlighted the temperature-dependent nature of the mechanical behavior of hot-rolled steel. While tensile strength and yield strength initially increase with temperature, prolonged exposure, particularly at 600 °C and 750 °C, results in significant grain coarsening and a corresponding degradation of these properties. Conversely, elongation improves at moderate temperatures (150 °C to 300 °C) but decreases with prolonged exposure, especially at higher temperatures. These findings underscore the importance of precise control of thermal processing parameters to optimize the mechanical properties of hot-rolled steel. The findings offer significant insights that can be leveraged to optimize material performance in industrial applications, where thermal exposure is a critical consideration.
This paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh
... Show MoreThree stations were chosen on the water treatment plan of al- madaan .The Samples collected from the (Raw water) and the Sedimentation, filtration and storage water and the drinking water of outlet. Coliform densities T.S and F.C and TS and F.S and total bacterial count as bacteriological pollution indicators, as moste probable number (MPN) method was studied in test. Also some of the chemical characteristics of the water like pH , total suspended solid T.S.S, T.D.D.and S04 , T.Hardness , Ca++ , Mg++ . From the results it were indicated . The study showed the drinking water of outlet (distriputed in system) was agree with WHO criteria and Iraqi limits standards .
Rapid population growth and the development of industries result in an increase in solid waste. Glass, which represents a large proportion of solid waste, can be used in construction applications. The utilization of recycled glass waste in the asphalt mixture is considered an environmentally-friendly application. In this laboratory study, glass bottles were recycled by crushing, grinding, and sieving them into particles that pass through sieve No. 200 to be used as a partial replacement for the filler in the hot mixture asphalt of wearing course Type-A. The ratios (4, 4.3, 4.6, 4.9, 5.2,5.5) were used to determine the optimum asphalt content (OAC), and three ratios (30, 60, and 90) were used for the replacement of limestone powder filler to
... Show MoreBackground: Bowel preparation prior to
colonic surgery usually includes antibiotic
therapy together with mechanical bowel
preparation which may cause discomfort to the
patients, prolonged hospitalization and water
& electrolyte imbalance.
Objective: to assess whether elective colon
and rectal surgery may be safely performed
without preoperative mechanical bowel
preparation.
Method: the study includes all patients who
had elective large bowel resection at Medical
City – Baghdad Teaching Hospital between
Feb, 2007 to Jan, 2010. Emergency operations
were not included. The patients were randomly
assigned to the 2 study groups (with or without
mechanical bowel preparation.
Results: A to
The ceramic compound Mg1-xSixAl2O4 (x= 0, 0.1, 0.2, 0.3, 0.4) was prepared from nano powder of Al2O3 and MgO doped with Nano powder of SiO2 at different molar ratios. The specimens were prepared by standard chemical solid reaction technique and sintered at 1450 oC. Structure of the specimens was analyzed by using X-ray diffraction (XRD). The X-ray patterns of the specimens showed the formation of pure simple cubic spinel structure MgAl2O4 phase with space group of ̅ . The average grain size and surface topology were studied by atomic force microscopy. The results showed that the average grain size was about 73-90 nm. The DC electrical properties of the specimen were measured. The apparent density was found to increase and the porosity a
... Show MoreThe regression analysis process is used to study and predicate the surface response by using the design of experiment (DOE) as well as roughness calculation through developing a mathematical model. In this study; response surface methodology and the particular solution technique are used. Design of experiment used a series of the structured statistical analytic approach to investigate the relationship between some parameters and their responses. Surface roughness is one of the important parameters which play an important role. Also, its found that the cutting speed can result in small effects on surface roughness. This work is focusing on all considerations to make interaction between the parameters (position of influenc
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreNanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres
... Show MoreThe effect of different Ti additions on the microstructure of Al-Ti alloy prepared by powder metallurgy was investigated. A certain amount of Ti (10wt%, 15wt%, and 20wt%) were added to aluminium and the tests like microhardness, density, scanning electron microscope (SEM), optical microscope (OM) and X-Ray Diffraction (XRD) were conducted to determine the influence of different Ti additives on the Al-Ti alloy properties and microstructure. The results show that the grains of α-Al changed from large grains to roughly spherical and then to small rounded grains with increasing Ti content, the micro-hardness of the alloy increases with increasing Ti, and XRD results confirm the formation of TiAl3 intermetallic co
... Show More