Three azo compounds were synthesized in two different methods, and characterized by FT-IR, HNMR andVis) spectra, melting points were determined. The inhibitory effects of prepared compounds on the activity of human serum cholinesterase have been studied in vitro. Different concentrations of study the type of inhibition. The results form line weaver-Burk plot indicated that the inhibitor type was noncompetitive with a range (33.12-78.99%).
The formation of a Schiff-base with N2O2 donor atoms derived from the hydrazine segment and its metal complexes are reported. The Schiff-base ligand; N’-((1R,2S,4R,5S,Z)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)furan-2-carbohydrazide (HL) was prepared from the reaction of furan-2-carbohydrazide with (1R, 2R, 4R, 5S)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one (M1) in ethanol medium. The reaction of the title ligand with selected metal ions Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) gave complexes with the general formula [M(L)Cl2], (where: M = Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II)). Spectroscopic analyses Fourier transform infrared (FT-IR), Nuclear Magnetic Resonance (NMR) Carbon-13 nuclear magnetic res
... Show MoreSome new cyclic imides are prepared by the reaction of ampicillin drug with different cyclic anhydrides as a first step to form amic acids for ampicillin drug. The second step includes the reaction of prepared amic acids with acetic anhydride and anhydrous sodium acetate with heating in THF as a solvent to give cyclic imide compounds. These compounds are identified by melting points, FT-IR, 1H-NMR, and biological activity
The formation and structural investigation of three new Mannich bases are reported. The synthesis of these compounds was accomplished via a multicomponent one-pot reaction using CaCl2 as a catalyst. The reaction of the benzaldehyde, m-bromoaniline and cyclohexanone or 4-methylcyclohexanone resulted in the formation of L1 and L3, respectively. The synthesis of L2 was achieved by mixing benzaldehyde, o-bromoaniline and cyclohexanone. The isolated compounds were characterised using a range of analytical and spectroscopic techniques. These include; NMR (1H and 13C-NMR), ESMS, FTIR, electronic spectroscopy, microanalyses and melting points. The NMR data for L1 and L2 indicated the presence of one isomer in solutions, on the NMR time scale. How
... Show MoreBackground: Isoxazoles are an important class of five-membered unsaturated heterocyclic compounds. They show several applications in diverse areas such as pharmaceuticals, agrochemistry and industry. Isoxazoles are also found in natural sources showing insecticidal, plant growth regulation and pigment functions. Current study was conducted for synthesis of twenty five new Isoxazole derivatives and to evaluate the in vitro antibacterial activities of these derivatives. Methods: Benzaldoxime and their substituted [I] ae were prepared via addition-elimination reactions between aromatic aldehyde and hydroxylamine hydrochloride. In a second step, para-or meta-substituted benzaldoximes [I] ae were reacted with N-chlorosucceinimide in DMF to yield
... Show MoreCoupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
A new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
The M(II) complexes [M2 (phen)2 (L)(H2O)2Cl2 ] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that all the
... Show More