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Abstract
The biological activities of some ternary nickel complexes with a Schiff base obtained from 4-dimethylaminobenzaldehyde 
and 2-aminophenol have been reported. The Schiff base  (HL1) acts as a primary ligand whereas, anthranilic acid  (HL2), 
2-nitroaniline  (HL3), alanine  (HL4) and histidine  (HL5) act as secondary ligand or co-ligand. The anticancer activity of 
these compounds was studied against human colon carcinoma (HCT-116), human hepatocellular liver carcinoma (HEPG-2) 
and human breast carcinoma (MCF-7) cell lines. As per the results, the compounds were active against the cell lines. The 
antioxidant activity of the same compounds was evaluated using DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical scaveng-
ing and compared with ascorbic acid. The DFT computations for these compounds were made to understand the bonding 
mode by a GAUSSIAN 09 program. Moreover, a docking analysis using Autodock 4.2 software package was carried out 
against the tyrosine kinase receptor (PDB ID: 1M17). In addition, QSAR investigation was also performed to understand 
the biological potency of the ligand.
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Introduction

The chemistry of Schiff bases has been discussed exten-
sively over the past few decades [Mohapatra et al. 2018a] 
due to their broad range of biological, biochemical and 
pharmacological activities. It is a commonly used organic 
ligand having –C=N– linkage and can coordinate to dif-
ferent metal ions via azomethine nitrogen. It has been 
reported that the presence of lone pair electron on  sp2 
hybridized nitrogen atom of the –C=N– linkage is respon-
sible for the biological properties [Patal 1970]. It has also 
been reported that the Schiff bases and their metal com-
plexes have a wide range of medicinal applications, such 
as anti-microbial, antioxidant, anticancer, anti-HIV, anti-
inflammatory activity. (El-Saghier et al. 2019; Ahamad 
et al. 2020; Sama et al. 2017; Kavitha and Reddy 2016) 
The activity is enhanced when these compounds are form-
ing complexes with various metal ions. (Mohapatra et al. 
2014, 2018b; Gaber et al. 2019; Mohapatra et al. 2019a).

Most of the divalent transition metal ions have an 
important role in the biological processes in the human 
body. The study of their coordination chemistry with 
mixed ligands has been one of the important develop-
ments in the field of bioinorganic chemistry (Kaim and 
Schwederski 1996). Over the years, ternary complexes, 
often referred as mixed ligand complexes have received 
considerable attention due to their wide role in analytical 
chemistry (Sigel 1975; Rao et al. 1998). However, recent 
studies showed that the ternary complexes with biologi-
cally potential ligands find use in various enzymatic reac-
tions and a large number of biological studies (Sigel 1975; 
Fathima et al. 2019; El-ajaily et al. 2018).

This is our continuing interest to design and study the 
medicinal properties of new drug-like compounds (Drapak 
et al. 2019; Sarangi et al. 2020; El-Barasi et al. 2020). In 
this work, we have reported the anticancer, antioxidant and 
molecular docking studies of some mixed ligand nickel com-
plexes. Moreover, DFT computations were carried out to 
obtain information inside into the structure.

Experimental

Material

All chemicals and reagents including 4-dimethylaminoben-
zaldehyde, 2-aminophenol, anthranilic acid, 2-nitroaniline, 
alanine, histidine and Ni(II) salt were of Sigma-Aldrich and 
used as such. The Schiff base ligand and its ternary Ni(II) 

complexes have been synthesized by literature method 
(Alassbaly et al. 2014; Maihub et al. 2014; El-ajaily et al. 
2015; Alassbaly et al. 2016).

Measurement of cytotoxicity by SRB assay

Cell lines and culturing

The human colon carcinoma (HCT-116), human hepato-
cellular liver carcinoma (HEPG-2) and human breast car-
cinoma (MCF-7) cell lines were used for this study. These 
cell lines were obtained in the frozen state under liquid nitro-
gen (− 180 °C) and maintained by serial sub-culturing in 
National Cancer Institute, Cairo University, Egypt. The cells 
were grown in RPMI-1640 medium supplemented with 10% 
fetal calf serum in presence of 1% l-glutamine and 1% anti-
biotic mixture (10 U/ml K-penicillin, 25 µg/ml amphotericin 
B and 10 µg/ml streptomycin sulphate). The compounds and 
standard drug (Doxorubicin) were evaluated for their cyto-
toxic activity in RCMB, Al-Azhar University, according 
to SRB (Sulfo-Rhodamine B) assay (Skehan and Storeng 
1990, NCCLS 2000). Cytotoxicity levels were expressed as 
 IC50 values and calculated (Chudzik et al. 2015). The cells 
were cultured at 37 °C in a humidified incubator contain-
ing 5%  CO2 in air. Following 24, 48 and 72 h treatment, 
cells were fixed, washed and stained with Sulforhodamine 
B stain. After the incubation period, the viable cells yield 
was determined by a colorimetric method. The percentage 
cell viability was calculated using Microsoft Excel as per 
the formula:

where Abs is the absorbance at 590 nm.

DPPH free radical scavenging activity

The antioxidant activity of these studied chelates was deter-
mined at RCMB, Al-Azhar University by DPPH free radi-
cal scavenging assay (Mantasha et al. 2019). The freshly 
prepared methanol solution (0.004% w/v) of 2,2-diphenyl-
1-picrylhydrazyl (DPPH) radical was prepared and stored 
in a dark place at 10 °C. A 40 µl aliquot of methanol solu-
tion was added to 3 ml of DPPH solution. The absorbance 
measurements were recorded immediately using a UV–Vis 
spectrophotometer at 1-min intervals until the absorbance 
stabilized (16 min). The absorbance of DPPH radical with-
out antioxidant (control) and ascorbic acid (reference) were 
also measured. The study was carried out in triplicate and 

%Cell viability

= (Mean Abs control −Mean Abs test metabolite) × 100

Author's personal copy



1007Chemical Papers (2021) 75:1005–1019 

1 3

average was taken. The percentage inhibition (PI) was deter-
mined according to the formula:

where AC = absorbance of the control at t = 0  min and 
AT = absorbance of the mixed ligand chelates + DPPH at 
t = 16 min.

DFT Assessment

The reported compounds were optimized and examined by 
Gauss View 6.0.16 graphical interface program (GaussView 
2009). The DFT evaluations were carried out using GAUSS-
IAN 09 suit programs (Becke 1993; Lee et al. 1988; Becke 
1988; Hay and Wadt 1984, 1985a, b; Frisch 2009). The very 
useful methods for exchange–correlation functional i.e. 
B3LYP is applied with 6-31 G (d, p)/LANL2DZ basic set.

Molecular docking studies

For receptor-oriented flexible docking, the Autodock 4.2 
software package was used. ligands were prepared using 
the MGL Tools 1.5.6 program. The ligand optimization was 
performed using the Avogadro program. To perform calcula-
tions in the Autodock 4.2 program the output formats of the 
receptor and ligand data were converted to a special PDBQT 
format (Mantasha et al. 2019). The active macromolecule 
center of the tyrosine kinase receptor (PDB ID: 1M17) from 
the Protein Data Bank (PDB) was used as a biological target 
for docking. The receptor maps were made in MGL Tools 
and AutoGrid programs. The visual analysis in the active 
center of tyrosine kinase receptor (PDB ID: 1M17) was per-
formed using Discovery Studio Visualizer program.

PI =
(AC − AT)

AC
× 100

Results and discussion

Computational analysis

For a clear understanding of the structural characteristics 
of the metal ion in all complexes computational studies 
were performed in a GAUSSIAN program platform. The 
Schiff base ligand  (HL1) and its Ni(II) complexes (Figs. 1, 
2, 3, 4, 6) were optimized using B3LYP/6-31 + G (d,p) and 
B3LYP/LANL2DZ/SSD basic set to create the geometri-
cal structures theoretically. Few structural parameters are 
important to elucidate the structure of the compounds such 
as bond lengths and bond angles of the optimized ligand 
and its complexes are presented in Table 1, which promi-
nently explained the bonding mode influence between the 
ligand with the metal atoms (Yousef et al. 2011, 2012a). 
The assessment of energetic properties such as single point 
energy and dipole moment (D) values of all the compounds 
are inspected using DFT/B3LYP 6-31 + G (d,p) and DFT/
B3LYP LANL2DZ basic sets. The single point energy com-
parison made between the ligand and its nickel complexes, 
prominently suggested that the metal complexes are more 
stable than the free ligand (Sarangi et al. 2018, El-ajaily 
et al. 2019) as the complexes lie lower in energy than the 
(free) ligand. From the calculated data, it is also confirmed 
that [NiL1L2(H2O)2]H2O have maximum dipole–dipole 
interaction (Table 2).      

Frontier molecular orbitals (FMO’s) investigation

To understand the complexation reaction and discover the 
reactive site in a conjugate system FMO’s studies play 
important roles. The molecular energies of  EHOMO and 
 ELUMO for the main ligand and all of its nickel complexes 
apparently explain the global reactivity descriptors such as 
chemical potential, chemical hardness and electrophilicity. 
The expected coordination site is clearly explained from 
the assessment of the molecular orbital coefficients (Yousef 

Fig. 1  Optimized geometry of 
the ligand  (HL1)
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et al. 2012b, 2013). The negative values of the energies of 
 EHOMO and  ELUMO for the ligand  (HL1) and all of its Ni 
complexes are confirmed the stability (Yousef et al. 2013; 
Govindarajan et al. 2012). A near observation of the LUMO 
orbital electron cloud for primary ligand sharply localized 
the electron density on the  N32,  N33 and  O34 (Fig. 5) for 
favorable atomic sites in the nucleophilic attacking posi-
tion. The differences in molecular energy predominantly 
describe the chemical reactivity and chemical stability of 
the strongly active molecule (Pearson 1989). The molecular 

orbital energy gap between HOMO and LUMO for the 
[NiL1L5(H2O)2]2H2O complex is established to be less than 
all the complexes and ligand. From the energy comparison 
values it is prominently explained that the reactivity of the 
[NiL1L5(H2O)2]2H2O complex is greater than all other 
complexes and free ligand (Figs. 6, 7).

For a clear understanding of FMO’s, few important quan-
tum chemical parameters such as electronegativity (χ), 
global hardness (η), chemical potential (μ), global softness 
(S) and global electrophilicity index (ω) were determined 

Fig. 2  Optimized geometry of 
[NiL1L2(H2O)2]H2O

Fig. 3  Optimized geometry of 
[NiL1L3(H2O)2]H2O
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(Padmanabhan et al. 2007, Pearson 1993) and presented in 
Table S1.
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Fig. 4  Optimized geometry of 
[NiL1L4(H2O)2]2H2O

Fig. 5  Optimized geometry of 
[NiL1L5(H2O)2]2H2O
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Table 1  Optimized bond 
lengths and angles according to 
DFT calculations

(C15H16N2O1)  HL1
B3LYP/6.31G (d, p)

[NiL1L5(H2O)2]2H2O
B3LYP/LANL2DZ

Bond length in (Å) Bond Angle in (°) Bond length in (Å) Bond Angle in (°)

C1-N33 (1.301) C1-N33-C8 (119.989) C1-N37 (1.452) C1-N37-C7 (110.101)
C8-N33 (1.302) C1-C3-O34 (120.011) C7-N37 (1.469) C1-C2-O39 (115.382)
C3-O34 (1.409) C1-C3-C6 (119.985) C2-O39 (1.425) C1-C2-C4 (120.810)
C3-C6 (1.386) C8-C9-C11 (120.008) C1-C2 (1.368) C7-C8-C9 (121.408)
C8-C9 (1.386) C2-C4 (1.398) C1-N37-Ni38 (106.236)

C7-C8 (1.354) C2-N39-Ni38 (107.561)
O39-Ni38 (1.834) C7-N37-Ni38 (111.702)

– – O44-Ni38 (1.810) C2-O39-Ni38 (107.561)
– – O41-Ni38 (1.843) C17-N36-Ni38 (112.819)
– – N36-Ni38 (1.827) C16-O41-Ni38 (108.649)
– – C17-N36 (1.445) C16-C17-N36 (104.463)
– – C16-O41 (1.449) C17-C16-O41 (115.969)
– – C16-C17 (1.345) N36-Ni38-O41 (79.688)
– – O40-Ni38 (1.809) N37-Ni38-O39 (79.688)
– – O44-Ni38 (1.810) –

Table 2  Energetic properties of the reported compounds calculated by DFT/B3LYP 6.31 + G (d, p) and DFT/B3LYP LANL2DZ basic sets

Compound Single point energy
(kcal/mol)

Dipole moment
(D)

DFT/B3LYP 6.31G + (d, P) DFT/B3LYP LANL2DZ DFT/B3LYP
6.31G + (d, P)

DFT/
B3LYP 
LANL2DZ

Comp. 1 (C15H16N2O1) HL1 − 4.8060 × 106 – 0.743 –
Comp. 2 [NiL1L2(H2O)2]H2O − 20.0617 × 106 − 20.1301 × 106 1.689 1.511
Comp. 3 [NiL1L3(H2O)2]H2O − 19.7980 × 106 − 19.5681 × 106 − 0.741 − 0.638
Comp. 4 [NiL1L4(H2O)2]2H2O − 19.5451 × 106 − 19.3791 × 106 1.311 1. 287
Comp. 5 [NiL1L5(H2O)2]2H2O − 20.9687 × 106 − 20.7492 × 106 − 1.684 − 1.581

Fig. 6  HOMO−LUMO energy 
comparison of the ligand  (HL1)
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Such analyses are helpful to describe the chemical reac-
tivity of the compound and the identification of the reac-
tive sites in the molecular system. The energy difference 
between the highest occupied molecular orbital’s and low-
est unoccupied molecular orbital’s level clearly explaining 
the charge-transfer interaction. The two important quantum 
chemical parameters as global hardness and global softness 
predicted from the band energy between HOMO–LUMO 
orbitals i.e. hard molecule large bandgap and soft molecule 
small bandgap (Pearson 1993). If we compare the chemical 
softness (S) of the ligand is less than all Ni(II) complexes, 
therefore, the reactivity of the ligand grater than all complex. 
Further some key parameter, such as the electrophilicity ( � ), 
assign a positive value, which quantifies the tendency of 
the system to accept an electron from the surrounding that 
clearly explains the complexes are more stable than the free 
ligand (Table S1).

� =
1

�

In vitro anticancer activity

The in vitro growth inhibitory activity of the prepared ter-
nary Ni(II) complexes was evaluated against HCT-116, 
HEPG-2 and MCF-7 cell lines along with the standard 
anticancer drug doxorubicin to assess cell proliferation. 
The inhibitory activities of comp. 5 against HEPG-2 cell 
lines were shown in Fig. 8. The  IC50 values of the tested 
compounds were determined and compared with doxoru-
bicin (Aljahdali et al. 2014). We know, the compounds 
exhibited  IC50 value below 5.00 μg/ml, within the range 
of 5.00–10.00 μg/ml and 10.00–25.00 μg/ml are consid-
ered strong, moderate and weak anticancer agents, respec-
tively (Shier 1991; Gaber et al. 2017). The obtained data 
showed that compound 3 and 4 were found to be more 
potent against all cancer cell lines, whereas, compound 2 
and 5 were found to be moderately active. The inhibitory 
activities of compound 4 against hepatocellular liver car-
cinoma (HEPG-2) cell lines are shown in Fig. 9.

Fig. 7  HOMO–LUMO energy comparison of a [NiL1L2(H2O)2]H2O, b [NiL1L3(H2O)2]H2O, c [NiL1L4(H2O)2]2H2O, d [NiL1L5(H2O)2]2H2O
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In vitro antioxidant activity

The scavenging ability determines the antiradical power of 
an antioxidant. Here, the free radical scavenging activity 
evaluation is carried out to determine the antioxidant activ-
ity of all the tested ternary Ni(II) complexes at 5, 10, 20, 40, 
80, 160, 320 and 640 μg concentrations by measuring the 
decrease in the absorbance of DPPH at 517 nm (Bou et al. 
2013). Ascorbic acid is used as a standard drug. The absorb-
ance has decreased when DPPH radical with purple color is 
scavenged by an antioxidant, through the donation of hydro-
gen to form a stable yellow color DPPH molecule (Mohapa-
tra et al. 2019b; Arulpriya et al. 2012). The results of DPPH 
radical scavenging analysis can be seen in Figs. 10 and 11 
and it displayed the dose–response curve of DPPH radical 

scavenging activity of ternary Ni(II) complexes compared 
with ascorbic acid. It was observed that at the lowest concen-
tration (5 µg), the antioxidant activity of ascorbic acid was 
found to be 12.98%, but this value is increased to 14.71% 
for comp. 3. Meanwhile, this percentage is decreased in the 
range of 9.58- 10.19% `in the other mixed ligand complexes.

Molecular docking studies

The choice of tyrosine kinase PDB ID: 1M17 (Epidermal 
Growth Factor Receptor tyrosine kinase domain with 4-ani-
linoquinazoline inhibitor erlotinib) as a biological target for 
the study of the possible antitumor activity is due to the 
existing crystallographic model co-crystallized with a deriv-
ative of 4-anilinoquinazoline (Fig. S1). Based on the results 
of molecular docking the following data were calculated:

• the scoring function indicating the enthalpy contribution 
to the value of the free energy of binding (Affinity DG) 
for the best conformational positions (Table 3).

• the values of the free energy of binding and binding con-
stants (EDoc kcal/mol and Ki mM (millimolar)) for a 
specific conformational position of the ligand; they allow 
assessing the stability of complexes formed between 
ligands and the corresponding receptor (Table 4).

It may be assumed that the inhibitory activity of the 
tested compounds relative to the tyrosine kinase recep-
tor (PDB ID: 1M17) is actualized by forming complexes 

Fig. 8  Inhibitory activities of compound-5 against hepatocellular carcinoma (HEPG-2) cell lines (a HEPG-2 non treated; b treated at 25μg/ml; c 
treated at 12.50 μg/ml; d treated at 6.25 μg/ml; e treated at 1.56 μg/ml; f treated at 0.39 μg/ml)

Fig. 9  Anticancer activity of the compounds  (IC50 values)
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between them. Their stability is provided mainly due to 
the energy favorable geometric location of ligands in the 
active center of the acceptor, intermolecular electrostatic 
and donor–acceptor interactions and formation of hydro-
gen bonds. The thermodynamic probability is noticed by 
negative values of the scoring function (Affinity DG, kcal/
mol), calculated values of the free energy of binding EDoc 
(kcal/mol), and binding constants Ki (mM/µM) (Table 5). 
To understand how the affinity of the drugs studied to 
the target, a detailed analysis of the geometric location 
of these molecules in the active site of the receptor was 
conducted.

Figure 12 displayed the ligand (Comp-1) superposition 
and the diagram of intermolecular interactions in the com-
plex with the tyrosine kinase receptor (PDB ID: 1M17). 
The complex with the receptor is formed due to the hydro-
gen bonds between the hydroxyl group and the LEU764 
residue with an interatomic distance of 2.76 Å, as well as 
with ALA719 with a distance of 2.50 Å, respectively. The 
π-cationic interaction occurs between the phenolic fragment 

of the molecule and LYS721 (interatomic distance – 4.85 
Å). The carbon-hydrogen interaction occurs between MET 
769 and methyl with an interatomic distance of 3.24 Å. The 
additional stabilization of the complex is facilitated by π-Alk 
interactions occurring between the phenyl fragment and the 
LEU694, LEU820, LEU764, and VAL702 residues.

In the formation of the Comp-2 complex with tyrosine 
kinase (Fig.  13) hydrogen bonds are involved; they are 
formed between the crystal-bound water (oxygen atom of 
carboxyl group) and the ARG817 (2.35; 2.68 Å) and ASP831 
(interatomic distance – 2.84 Å) residues. The carbon-hydro-
gen bond occurs between MET769 and the methyl fragment 
(3.50 Å). There is the π–π interaction between PHE699 
and the phenyl residue (4.13 Å). The π-anionic interaction 
occurs between the ASP831 residue and the phenyl fragment 
(interatomic distance is 3.20 and 3.55 Å, respectively). The 
complex of π-Alk interactions occurring between the phenyl 
ring and LEU694, VAL702 is stabilized. In the formation of 
the Comp-3 complex with tyrosine kinase the π-cation bond 
between ASP83, PHE699 and the phenyl fragment (3.90 Å 
and 4.59Å) is involved. The carbon-hydrogen bond occurs 
between THR766and the alkyl inclusion (3.72 Å) and this 
bond is fixed between LEU764 and the alkyl inclusion of 
the molecule (3.58Å). The complex of π–π, π-Alk and Alk 
interactions occurring between the phenyl ring and LYS721, 
LEU894, PHE 699 is stabilized (Fig. 13).

When a complex is formed between Comp-4 and the 
tyrosine kinase receptor, there is a hydrogen bond due to 
the oxygen atom of the carbonyl group and the CYS751 
residue (interatomic distance—2.87 Å). Electrostatic inter-
actions occur between the Nitrogen atom of the amino 
group and GLU738 (4.94 Å) and ASP831 (5.24 Å). There 
is the π-σ bond between the phenyl fragment and VAL702 
(interatomic distance—3.94 Å). The carbon-hydrogen 
bonds are formed between the methyl fragment and 
PRO770 (3.80 Å) MET769 (3.78 Å). The additional stabi-
lization of the complex is facilitated by π-Alk interactions 
between the phenyl fragment and the LEU820, VAL702, 
and LEU694 residues, respectively (Fig. 13).

When a complex is formed between Comp-5 and the 
tyrosine kinase receptor, there is a hydrogen bond due to 
the oxygen atom of the crystal-bound water and this con-
nection occurs between the histidine fragment (nitrogen 
atom of the amino group) and the ARG817 residue (inter-
atomic distance—2.12 Å and 2.16Å). Carbon hydrogen 
bonds arise between the alkyl moieties of the molecule and 
LEU761 (3.54Å), THR761 (3.15 Å) and ALA719 (3.75 
Å). The appearance of the complex is facilitated by the 
π-anion and π-cation interactions with phenyl fragments 
and ASP831 residues with interatomic distances of 3.92 Å 
and 3.30 Å. The pi-sulfur bond is formed between the imi-
dazole histidine cycle and the residue CYS773 (5.46 Å). 
Additionally stabilize the complex π–π, π-Alk interactions 

Fig. 10  Antioxidant activity of ascorbic acid and ternary Ni(II) com-
plexes using DPPH scavenging

Fig. 11  Antioxidant activity of the compounds using DPPH scaveng-
ing
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arising between aromatic fragments of the chelate com-
plex and amino acid residues of PHE 699, VAL702 and 
LYS721 (Fig. 13). Taking into account the detailed analy-
sis of the location of the molecules tested in the active site 
of the tyrosine kinase receptor, the formation of a num-
ber of intermolecular interactions between them, negative 

values of scoring functions and calculated values of bind-
ing constants, it can be concluded that the presence of 
nickel in the molecule contributed to an increase in the 
affinity for the specified biological target.

Electrostatic potential analysis

The electrostatic potential surfaces of the Schiff base 
ligand and [NiL1L5(H2O)2]2H2O complex were executed 
by applying GAUSSIAN 09 platform. This framework 
is useful to understand the receptive behavior of a com-
pound. From the molecular surface plot, the negative part 
of the electron cloud shows as nucleophilic centers, but the 
positive part of the electron cloud shows the potential elec-
trophile sites. For clear understanding the different visible 
mode of ESP plots (Figs. S2 and S3) showed the molecular 
size, molecular shape and electrostatic potential activity. 
In the ligand, the amino nitrogen and hydroxy oxygen 
centers showed high negative electron potential locality. 
The electrostatic potential plot of [NiL1L5(H2O)2]2H2O 
was a predominance of the green region which clearly 
explained the complex is halfway potential electron 

Table 3  Affinity DG values for 9 conformational positions of the test 
compounds in combination with the enzyme tyrosine kinase (PDB 
ID: 1M17)

No. Afinity DG, kcal/mol

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

1 − 7.7 − 9.4 − 10.5 − 9.2 − 9.1
2 − 7.7 − 8.7 − 8.4 − 9.0 − 8.1
3 − 7.6 − 8.5 − 8.3 − 8.4 − 8.1
4 − 7.1 − 8.2 − 8.0 − 8.4 − 8.0
5 − 6.9 − 8.1 − 8.0 − 8.4 − 7.9
6 − 6.6 − 7.8 − 7.5 − 8.2 − 7.9
7 − 6.5 − 7.8 – − 8.2 − 7.8
8 − 6.4 − 7.7 – − 8.2 − 7.5
9 − 6.4 − 7.7 – − 8.1 − 7.5

Fig. 12  The Ligand superposition and the diagram of intermolecular interactions in the complex with tyrosine kinase receptor (PDB ID: 1M17)
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distribution among two extreme color red and blue (Mau-
rya et al. 2014, Khanna et al. 2020).

Mulliken charge population analysis

The entire atomic charges of the l igand and 
[NiL1L5(H2O)2]2H2O were obtained by Mulliken charge 
population analysis studies (Mulliken 1995). This analysis 
was performed by GAUSSIAN 09 platform with B3LYP/
LANL2DZ basic set. Ultimately Mulliken graphical plots 
were obtained for both ligand and complex (Figs. 14, 15). If 
we analyze the plots, atoms color are clearly showed Mul-
liken values in the positive and negative form of charge. The 
Mulliken charge population analysis is providing absolute 
details about total charge density or an orbital density of 
ligand and complex.

QSAR analysis

The Quantitative Structure–Activity Relationship tech-
nique is a useful tool to predict the activity, reactivity and 
properties of the prepared molecules. The computation 
work was carried out with the help of HyperChem Pro-
fessional 8.0.3 platform. At first, the ligand structure is 
optimized by  (MM+) force field, with semi-empirical PM3 
methods. Further, the energy minimization method was 
fulfilling with Fletcher-Reeves conjugate gradient algo-
rithm. The calculated log P value for the ligand  (HL1) is 
3.05. The crucial role of the partition coefficient (log P) 
value is to describe the biological activity of the ligand, 
which may evaluate the permeability of the applied com-
pound into the cell membrane (Padmanabhan et al. 2007). 
Few other necessary physical parameters such as surface Ta
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Table 5  Quantitative structure–activity relationship calculation for 
optimized ligand  (HL1)

Function (Comp. 1) (2-(2-(2,4-dini-
trophenyl)hydrazone methyl 
phenol

Surface area (Approx) (Å2) 400.29
Surface area (Grid) (Å2) 483.20
Volume (Å3) 782.35
Hydration energy (Kcal/mole) − 19.26
Log P 3.05
Refractivity (Å3) 26.45
Polarizability (Å3) 28.28
Mass (amu) 302.25
Total energy (kcal/mol) − 87723.16
Dipole Moment (Debye) 0
Free energy (kcal/mol) − 87723.16
RMS Gradient (kcal/Å mol) 0.49
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area, volume, hydration energy, refractivity, polarizability, 
mass, total energy, free energy and RMS gradient were 
also evaluated to propose the reactivity of the ligand and 
represented in Table 5.

Conclusion

The anticancer and antioxidant properties of some ternary 
nickel complexes have been reported. The Schiff base acts 
as a primary ligand  (HL1) whereas; anthranilic acid  (HL2), 
2-nitroaniline  (HL3), alanine  (HL4) and histidine  (HL5) act 
as secondary ligand or co-ligand. The anticancer activ-
ity of these compounds was studied against human colon 

Fig. 13  The superposition in the 
complex with tyrosine kinase 
receptor (PDB ID: 1M17); a 
Comp-2, b Comp-3, c Comp-4, 
d Comp-5
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carcinoma (HCT-116), human hepatocellular liver carci-
noma (HEPG-2) and human breast carcinoma (MCF-7) 
cell lines. The obtained data showed that compound 3 and 
4 were found to be more potent against all cancer cell lines, 
whereas, compound 2 and 5 were found to be moderately 
active. The antioxidant activity of these compounds was 
evaluated using DPPH radical scavenging and compared 
with ascorbic acid. The DFT computations for these com-
pounds were made to understand the mode of bonding. The 
molecular orbital energy gap between HOMO and LUMO 
for comp. 5 is established to be less than all the other com-
pounds. From the energy comparison values it is promi-
nently explained that the reactivity of comp. 5 is greater 
than all other compounds also. Moreover, a docking analysis 
using Autodock 4.2 software package was carried out against 
the tyrosine kinase receptor (PDB ID: 1M17). In addition, 
ESP and Mulliken charge population analysis were carried 
out using GAUSSIAN 09 platform. Furthermore, QSAR 
Analysis is reported to predict the activity and reactivity of 
the Schiff base ligand.
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