This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d orbitals of the metal. Most 3d TMCs exhibit metallic properties, excluding zb-TiC and zb-FeC in all phases. An inverse correlation between elastic constant C44 and electronic states near the Fermi level (EF) emerges, guiding applications and design. This study efficiently uncovers 3d TMC properties, offering insights for applications and design.
An Investigation of estimated Mechanical Properties of AL-Alloys 2024-T3, which is the most commonly used in industrial applications, been established experimentally. A new novel Plasma Peening techniques had applied for the whole surfaces of the material by CNC-Plasma machine for 48 specimen, and then a new investigation were toke over to figure the amount of change in mechanical properties and estimated fatigue life. It found that improvement was showing a nonlinear behavior according to peening duration time, speed, peening distance, peening number, and amount of effected power on the depth of the material thickness. The major improvement was at medium speed long duration time normal peening distance. Which shows up t
... Show MoreThis work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern wit
... Show MoreElectrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a
... Show MoreThis work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show MoreA new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Fe(III) have been synthesized from the Schiff base (L1) and (L2) derived from Semicarbazide hydro chloride and 4-chlorobenzaldehyde or 4-bromobenzaldehyde. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conductivity, IR, UV-Vis. and 1H NMR spectral studies. The data show that the complexes have composition of [M(L)2](NO3)2 and [Fe(L)2 (NO3)2](NO3) where the M=Co(II),Ni(II) and Cu(II) ;L=L1and L2 type. The magnetic susceptibility and UV-Vis spectral data of the complexes suggest a square planer geometry for Co(II) and Cu(II) but Fe(III) octahedral geometry and Ni(II) tetrahedral geometry around the central metal i
... Show MoreIn This paper, we have been approximated Grűnwald-Letnikov Derivative of a function having m continuous derivatives by Bernstein Chlodowsky polynomials with proving its best approximation. As well as we have been solved Bagley-Torvik equation and Fokker–Planck equation where the derivative is in Grűnwald-Letnikov sense.
The structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici
... Show MoreThe effect of thermal annealing on some structural and optical properties of ZnSe thin films was studied which prepared by thermal evaporation method with (550±20) nm thickness and annealing at (373,473)K for (2h), By using X-ray diffraction technique structural properties studied and showed that the films are crystalline nature and have ( cubic structure ) .From the observed results after heating treatment, We found that the annealing to perform decreases in grain size and increases in dislocation and observed the optical properties increase in absorption and decrease in transmission. From absorption spectra optical energy gap calculated about (2.66,2.68)eV which decreases value after heating treatment