Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm arises from Bcr-Abl gene translocation (called Ph chromosome) in hematopoietic stem cells (HSCs). This genetic abnormality results in constitutive activation of tyrosine kinase and subsequent uncontrol growth and multiplication of granulocytes. The cornerstone in treatment of CML are tyrosine kinase inhibitors, of which imatinib is the most effectively used. JAK2V617F mutation is an acquired single nucleotide polymorphism (SNP) occurs in JAK2 gene and is associated with many hematological malignancy other than CML. It was thought that the two genetic abnormalities (Bcr-Abl and JAK2V617F) occur mutually; however, growing body of evidences suggested the reverse. This study aimed to investigate the prevalence of JAK2V617 mutation associated with serum levels of alkaline phophatase (ALK) and lactate dehydrogenase (LDH) in Ph+ CML Iraqi patients treated with imatinib. A total of 43 Ph+ CML patients (24 males and 18 females, age range 16-80 years) who attend Iraqi National Center of Hematology for Research and Treatment/Baghdad were enrolled in this study. Each patient has been received at least six month therapy with imatinib. A consent form involving age, gender, height, weight, smoking status, residency and first family relative history of leukemia was obtained from each patient. Besides, blood samples were collected, from which the granulocytes were separated and then DNA was extracted using a ready kit. Two assays were used for detection of JAK2V617F mutation; real time polymerase chain reaction (qPCR) using specific primers and probe, and allele specific PCR (AS-PCR) using specific primers. Total white blood corpuscles (WBC) as well as serum levels of ALP and LDH were measured. qPCR assay revealed 5 patients out of 43 (11.62%) were heterozygous for the muatant allele of JAK2V617F mutation (genotype GT). The concentration of this allele ranged from 0.01% to 0.12%. None of blood sample gave positive result for AS-PCR assay. From the all risk factors, only gender had significant association with the incidence of JAK2V617F mutation (p= 0.034, OR= 0.5, 95%CI= 0.364-0.687). Average total WBC count, and serum levels of ALP and LDH were higher in JAK2V617F-positive patients (9042±1512.55, 146.05±8.028 IU/L and 204±10.85 IU/L respectively) than that of JAK2V617F-negative patients (6039±1772.239, 64.45±40.15 IU/L and 178.33±13.693 IU/L respectively) with significant differences. These results indicate that JAK2V617F mutation can occur simultaneously with Ph chromosome in CML patients, and qPCR is a highly sensitive method for the detection of this mutation. Furthermore, serum activity of APL can be used as an indicator for the presence of JAK2V617F mutation in CML patients.
Cyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer
... Show MoreMalaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreAbstract
The study seeks to use one of the techniques (Data mining) a (Logic regression) on the inherited risk through the use of style financial ratios technical analysis and then apply for financial fraud indicators,Since higher scandals exposed companies and the failure of the audit process has shocked the community and affected the integrity of the auditor and the reason is financial fraud practiced by the companies and not to the discovery of the fraud by the auditor, and this fraud involves intentional act aimed to achieve personal and harm the interests of to others, and doing (administration, staff) we can say that all frauds carried out through the presence of the motives and factors that help th
... Show MoreMost intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MorePattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that