Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm arises from Bcr-Abl gene translocation (called Ph chromosome) in hematopoietic stem cells (HSCs). This genetic abnormality results in constitutive activation of tyrosine kinase and subsequent uncontrol growth and multiplication of granulocytes. The cornerstone in treatment of CML are tyrosine kinase inhibitors, of which imatinib is the most effectively used. JAK2V617F mutation is an acquired single nucleotide polymorphism (SNP) occurs in JAK2 gene and is associated with many hematological malignancy other than CML. It was thought that the two genetic abnormalities (Bcr-Abl and JAK2V617F) occur mutually; however, growing body of evidences suggested the reverse. This study aimed to investigate the prevalence of JAK2V617 mutation associated with serum levels of alkaline phophatase (ALK) and lactate dehydrogenase (LDH) in Ph+ CML Iraqi patients treated with imatinib. A total of 43 Ph+ CML patients (24 males and 18 females, age range 16-80 years) who attend Iraqi National Center of Hematology for Research and Treatment/Baghdad were enrolled in this study. Each patient has been received at least six month therapy with imatinib. A consent form involving age, gender, height, weight, smoking status, residency and first family relative history of leukemia was obtained from each patient. Besides, blood samples were collected, from which the granulocytes were separated and then DNA was extracted using a ready kit. Two assays were used for detection of JAK2V617F mutation; real time polymerase chain reaction (qPCR) using specific primers and probe, and allele specific PCR (AS-PCR) using specific primers. Total white blood corpuscles (WBC) as well as serum levels of ALP and LDH were measured. qPCR assay revealed 5 patients out of 43 (11.62%) were heterozygous for the muatant allele of JAK2V617F mutation (genotype GT). The concentration of this allele ranged from 0.01% to 0.12%. None of blood sample gave positive result for AS-PCR assay. From the all risk factors, only gender had significant association with the incidence of JAK2V617F mutation (p= 0.034, OR= 0.5, 95%CI= 0.364-0.687). Average total WBC count, and serum levels of ALP and LDH were higher in JAK2V617F-positive patients (9042±1512.55, 146.05±8.028 IU/L and 204±10.85 IU/L respectively) than that of JAK2V617F-negative patients (6039±1772.239, 64.45±40.15 IU/L and 178.33±13.693 IU/L respectively) with significant differences. These results indicate that JAK2V617F mutation can occur simultaneously with Ph chromosome in CML patients, and qPCR is a highly sensitive method for the detection of this mutation. Furthermore, serum activity of APL can be used as an indicator for the presence of JAK2V617F mutation in CML patients.
Global Navigation Satellite Systems (GNSS) have become an integral part of wide range of applications. One of these applications of GNSS is implementation of the cellular phone to locate the position of users and this technology has been employed in social media applications. Moreover, GNSS have been effectively employed in transportation, GIS, mobile satellite communications, and etc. On the other hand, the geomatics sciences use the GNSS for many practical and scientific applications such as surveying and mapping and monitoring, etc.
In this study, the GNSS raw data of ISER CORS, which is located in the North of Iraq, are processed and analyzed to build up coordinate time series for the purpose of detection the
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreIn this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show More