Preferred Language
Articles
/
HxdfH44BVTCNdQwCjDJz
Mathematical Statistics - Second Edition
...Show More Authors

This Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial and Hypergeometric) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Chapter Five deals with some special continuous distributions: (Uniform, Normal, Exponential, Gamma and Beta) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Many solved examples are intended in this book (obtaining mean and variance of distributions by m.g.f.). Chapter Six introduces univariate discrete and continuous transformations, i.e., one dimensional variables and their yielding probability distributions. Chapter Seven devotes to truncation of distributions from left, right or both sides, beside the probability distribution of order statistics. Chapter Eight discusses mathematical features of joint, marginal and conditional distributions, as well as independency via covariance and correlation of bivariate distributions. Chapter Nine deals with some special topics such as getting distribution for some transformation from multidimensional random variables by using moment generating function (m.g.f.) and cumulative distribution function (C.D.F.) Many solved examples (about 100) are intended in this book, in addition to a variety of unsolved relied problems (about 150) at the end of each chapter to enrich the statistical knowledge of our readers.

Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Full Text Book Of Minar Congress8
REGULARITY VIA PRE- GENERALIZED OPEN SETS
...Show More Authors

By use the notions pre-g-closedness and pre-g-openness we have generalized a class of separation axioms in topological spaces. In particular, we presented in this paper new types of regulαrities, which we named ρg­regulαrity and Sρg­regulαrity. Many results and properties of both types have been investigated and have illustrated by examples.

View Publication
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Truncated Inverse Generalized Rayleigh Distribution and Some Properties
...Show More Authors

Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete.  Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters  is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, ‎rth moment, mean,   variance, Moment Generating Function, Skewness, kurtosi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution
...Show More Authors

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Certain Family of Multivalent Functions Associated With Subordination
...Show More Authors

The main objectives of this pepper are to introduce new classes. We have attempted to obtain coefficient estimates, radius of convexity, Distortion and  Growth theorem and other related results for the classes

View Publication Preview PDF
Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
ON DISCRETE WEIBULL DISTRIBUTION
...Show More Authors

Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where      0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei
...Show More Authors

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Feb 19 2022
Journal Name
Advances In Continuous And Discrete Models
Geometric properties of the meromorphic functions class through special functions associated with a linear operator
...Show More Authors
Abstract<p>According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.</p>
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Entropy and Linear Exponential Loos Function Estimators the Parameter and Reliability Function of Inverse Rayleigh Distribution
...Show More Authors

     This paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The  performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results. 

 

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
مقارنة مقدرات بيز لدالة المعولية لتوزيع باريتو من النوع الاول باستعمال دوال معلوماتية مضاعفة مختلفة
...Show More Authors

The comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto  type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for

... Show More
View Publication Preview PDF
Crossref