Heat shock protein 70 (HSP70) is a crucial protein with vital biological tasks in cell continuation of life. The variation of HSP70 activation occurs as a consequence of stress that includes temperature states, toxicity, poisoning with heavy metals, and tumor-related conditions. One of the master jobs of the HSP family is the suppression of caspase-mediated apoptosis signals. A high level of the expression of HSP70 is accountable for tumorigenesis and resistance against chemotherapeutic drugs. For this reason, the detection of HSP70 may help to diagnose cancerous diseases. From the other side, targeting this chaperone might help in treatment by maintaining late caspase-dependent events. This study was conducted to detect the presence and the location of HSP70 in Iraqi thyroid tumor tissue specimens (25 samples), in addition to 10 samples of normal thyroid tissue. Using the immunohistochemical study (paraffin method), the protein was detected in 100% of follicular carcinoma or follicular adenoma (benign) in addition to 77.7 % of papillary thyroid carcinoma while, in normal thyroid tissue, the presence of protein was in 10 % of cases. Regarding protein location in the cells, it appeared in the nuclei and the cytoplasm of follicular carcinoma cases in comparison with just in the cytoplasm of other sections.
Mixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical
... Show MoreThis paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 103-106 with Prandtl number 0.71
... Show MoreAn improved Metal Solar Wall (MSW) with integrated thermal energy storage is presented in this research. The proposed MSW makes use of two, combined, enhanced heat transfer methods. One of the methods is characterized by filling the tested ducts with a commercially available copper Wired Inserts (WI), while the other one uses dimpled or sinusoidal shaped duct walls instead of plane walls. Ducts having square or semi-circular cross sectional areas are tested in this work.
A developed numerical model for simulating the transported thermal energy in MSW is solved by finite difference method. The model is described by system of three governing energy equations. An experimental test rig has been built and six new duct configurations have b
The heat and mass transfer coefficients of the indirect contact closed circuit cooling tower, ICCCCT, were investigated experimentally. Different experiments were conducted involving the controlling parameters such as air velocity, spray water to air mass flow rate ratio, spray water flow rate, ambient air wet bulb temperature and the provided heat load to investigate their effects on the performance of the ICCCCT. Also the effect of using packing on the performance of the ICCCCT was investigated. It was noticed that these parameters affect the tower performance and the use of packing materials is a good approach to enhance the performance for different operational conditions. Correlations for mass and heat transfer coefficients are pres
... Show MoreBackground: The immunogenetic predisposition
may be considered as an important factor for the
development of Type 1 Diabetes Mellitus (T1DM)
in association with the HLA antigens.
Objective:This study was designed to investigate
the role of HLA-class II antigens in the etiology of
type T1DM and in prediction of this disease in
siblings, and its effect on expression of glutamic
acid decarboxylase autoantibodies (GADA).
methods:Sixty children who were newly diagnosed
type 1 diabetes (diagnosed less than five months)
were selected. Their age ranged from 3-17 years.
Another 50 healthy siblings were available for this
study, their ages range from 3-16 years. Eighty
apparently healthy control subjects,