Heat shock protein 70 (HSP70) is a crucial protein with vital biological tasks in cell continuation of life. The variation of HSP70 activation occurs as a consequence of stress that includes temperature states, toxicity, poisoning with heavy metals, and tumor-related conditions. One of the master jobs of the HSP family is the suppression of caspase-mediated apoptosis signals. A high level of the expression of HSP70 is accountable for tumorigenesis and resistance against chemotherapeutic drugs. For this reason, the detection of HSP70 may help to diagnose cancerous diseases. From the other side, targeting this chaperone might help in treatment by maintaining late caspase-dependent events. This study was conducted to detect the presence and the location of HSP70 in Iraqi thyroid tumor tissue specimens (25 samples), in addition to 10 samples of normal thyroid tissue. Using the immunohistochemical study (paraffin method), the protein was detected in 100% of follicular carcinoma or follicular adenoma (benign) in addition to 77.7 % of papillary thyroid carcinoma while, in normal thyroid tissue, the presence of protein was in 10 % of cases. Regarding protein location in the cells, it appeared in the nuclei and the cytoplasm of follicular carcinoma cases in comparison with just in the cytoplasm of other sections.
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with tumor angiogenesis playing a pivotal role in its progression and metastasis. CD144 (VE-cadherin), a calcium-dependent adhesion molecule, is critical for endothelial cell integrity and has been linked to tumor angiogenesis and cancer stem cell phenotypes. This study aimed to evaluate the immunohistochemical expression of CD144 in benign colorectal lesions, normal adjacent tumor tissue (NRAT), and tumor tissues to elucidate its role in colorectal cancer progression. Multiple techniques, including immunohistochemistry, flow cytometry, Western blot, and qPCR, were used to assess CD144 expression and its association with the VEGF/VEGFR2 signaling pat
... Show MoreIt was aimed to understand the interleukin-4 (IL-4) role in etio-pathogenesis of rheumatoid arthritis (RA). Two approaches were adopted. In the first one, a quantitative expression of IL4 gene was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and such findings were correlated with some demographic, clinical and laboratory parameters, which included gender, duration of disease, disease activity score (DAS-28), rheumatoid factors (RFs), C-reactive protein (CRP) and anti-cyclic citrullinated peptide (ACCP) antibodies. In the second approach, a single nucleotide polymorphism (SNP) of IL4 gene (rs2243250) was inspected by DNA sequencing using specific primers. Fifty-one Iraqi RA patients (22 males and 29 fem
... Show MoreBackground: Cyclin D1 proto-oncogene is an important regulator of (G1 to S) phase progression in many different cell types. The Aims of this study were to evaluate the immunohistochemical expression of Cyclin D1 in mucoepidermoid and adenoid cystic carcinoma of the salivary glands and to correlate the immunoexpression of this protein with the clinicopathological findings. Materials and methods Retrospectively, twelve of archival formalin fixed paraffin embedded tissue samples of salivary Mucoepidermoid and fourteen blocks of adenoid cystic carcinomas obtained from the archives of the department of oral pathology / college of dentistry / Baghdad university, Al-Shaheed Ghazi hospital, were included in this study. Five micrometer sections o
... Show MoreThe steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortr
... Show MoreThe steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran
... Show MoreExperimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test
... Show MoreThe possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreMolasse medium containing different concentrations of (NH4)2 SO4, (NH4)3 PO4, urea, KCI, and P2O5 were compared with the medium used for commercial production of C. utilis in a factory south of Iraq. An efficient medium, which produced 19. 16% dry wt. and 5. 78% protein, was developed. The effect of adding various concentrations of micronutrients (FeSO4, 7T20, MnSO4. 7H20, ZnSO4. 7E20) was also studied. Results showed that FeSo4. 7H20 caused a noticeable increase in both dry wt. and protein content of the yeast.