Preferred Language
Articles
/
HxbCCYoBVTCNdQwCeZAE
Modified Single Mode Optical Fiber Ammonia Sensors Deploying PANI Thin Films

Modified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical fiber sensors coated with nanostructured thin films have been developed and gained popularity as practical devices towards gases with low concentrations. The development and characterization of the modified SMF sensing platforms including etched, tapered and etched-tapered platforms against ammonia will be presented in this chapter. These platforms were coated with PANI nanostructured thin film. The 50 μm etched-tapered SMF coated with PANI produced response, recovery times, and sensitivity of 58 s, 475 s, and 231.5%, respectively, in the C-band range. The limit of detection of the modified fiber sensor was 25 ppm. The developed sensors exhibit good repeatability, reversibility, and selectivity.

Crossref
View Publication
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Effect of Films Thickness on Structural and Optical Properties of Gold (Au) Thin Films Prepared by DC Magnetron Sputtering

In this paper, the effect of films thickness on the structural and optical properties of gold (Au) thin films prepared by the DC sputtering method was studied. At three different deposition times, three samples of gold thin films of three different thicknesses (200,400, and 600 nm) were prepared. X-ray diffraction patterns, scanning electron microscopy (SEM), and atomic force microscopy (AFM) images, as well as optical spectroscopy, were used to characterize thin films. The crystalline structure of gold thin films was determined by the XRD pattern which showed to be cubic phase and polycrystalline in nature. The preferred orientation was (111) at 2Ѳ equal 37.4. The effect of deposition time on the morphology of the deposited films was v

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri May 08 2020
Journal Name
Electronic Theses And Dissertations
Improving Nitrogen Management in Potatoes with Active Optical Sensors

Nitrogen (N) fertilizer rate is important for high yield and good quality of potato tubers. In this dissertation, I seek to study the response of different potato cultivars under different N fertilizer rates and how that can impact tuber quality, examine the performance of active optical sensors in improving a potato yield prediction algorithm, and evaluate the ability of active optical sensors (GreenSeeker (GS) and Crop Circle (CC)) to optimize a N recommendation algorithm that can be used by potato growers in Maine. This research was conducted at 11 sites over a period of two years (2018–2019) in Aroostook County, Maine; all sites depended on a rainfed system. Three potato cultivars, Russet Burbank, Superior, and Shepody, were planted u

... Show More
View Publication
Publication Date
Mon Mar 09 2020
Journal Name
Agrosystems, Geosciences & Environment
In-season potato yield prediction with active optical sensors

Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference ve

... Show More
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Ovonic Research
Publication Date
Sun Jan 12 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability
Preview PDF
Publication Date
Mon Jun 10 2013
Journal Name
International Journal Of Application Or Innovation In Engineering & Management (ijaiem)
The Effect of Annealing Temperature on the Optical Properties of CdS and CdS:Al Thin Films

Cadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di

... Show More
Publication Date
Sun Jan 05 2014
Journal Name
Paripex - Indian Journal Of Research
Effect of heat treatment on the structural and optical properties of CuIn1-xGaxSe thin films

The structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici

... Show More
Preview PDF
Publication Date
Fri Sep 09 2022
Journal Name
Journal Of Ovonic Research
Effect of dopant of aluminum on the structural and optical properties of NiTsPc thin films

The (NiTsPc) thin films operating by vacuum evaporation technique are high recital and good desirable for number of applications, were dumped on glass substrates at room temperature with (200±20nm) thickness and doped with Al at different percentage (0.01,0.03) besides annealing the sample with 200˚C for 1 hours . The stimuluses of aluminum dopant percentage on characterization of the dropped (Ni Ts Pc) thin films were studied through X-ray diffraction in addition from the attained results, were all the films have polycrystalline in nature, as well the fallouts of XRD aimed at film illustrations polycrystalline, depending on the Al ratio doping, the results, SEM exposed the surface is regularly homogeneous. Utilizing first-ideolog

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
Structural and Optical Properties for Zn Doped CdO Thin Films Prepared by Pulse Laser deposition

In this work, the effect of Zn dopant on structural and optical properties of cadmium oxides, CdO, thin film were studied prepared by pulse laser deposition on glass substrate then annealed at 250 ᵒC in air. All films were examined by X-ray diffraction and UV- visible spectrometer. The XRD analysis shows  appearance of  new phase identical with hexagonal ZnO additional with cubic phase at high Zn content, which effected on the optical properties. The optical energy gap increase from 2.45 eV to 2.70 eV with increasing  Zn content  from 0 to 40 %.

View Publication Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Synthesis, characterization, and optical properties of copper oxide thin films obtained by spray pyrolysis deposition

     Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an

... Show More
Crossref (1)
Crossref
View Publication Preview PDF