Preferred Language
Articles
/
HxbCCYoBVTCNdQwCeZAE
Modified Single Mode Optical Fiber Ammonia Sensors Deploying PANI Thin Films

Modified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical fiber sensors coated with nanostructured thin films have been developed and gained popularity as practical devices towards gases with low concentrations. The development and characterization of the modified SMF sensing platforms including etched, tapered and etched-tapered platforms against ammonia will be presented in this chapter. These platforms were coated with PANI nanostructured thin film. The 50 μm etched-tapered SMF coated with PANI produced response, recovery times, and sensitivity of 58 s, 475 s, and 231.5%, respectively, in the C-band range. The limit of detection of the modified fiber sensor was 25 ppm. The developed sensors exhibit good repeatability, reversibility, and selectivity.

Crossref
View Publication
Publication Date
Wed May 01 2019
Journal Name
Sensors And Actuators B: Chemical
Scopus (35)
Crossref (42)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Scopus (13)
Crossref (17)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design of Single Mode Fiber for Optical Communications

In this work, a step-index fiber with core index  and cladding index  has been designed. Single-mode operation can be obtained by using a fiber with core diameters 4–13 µm operating at a wavelength of 1.31 µm and by 4–15 µm at 1.55 µm. The fundamental fiber mode properties such as phase constant, effective refractive index, mode radius, effective mode area and the power in the core were calculated. Distributions of the intensity and the amplitude were shown.

Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Handbook Of Polymer Nanocomposites For Industrial Applications
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Sun May 01 2022
Journal Name
Optical Fiber Technology
Scopus (10)
Crossref (10)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB

Computer-aided modeling and simulation software programs are essential tools
to predict how an optical communication component, link, or network will function
and perform. This paper aims to investigate the various effects on pulses
propagation in optical transmission systems utilizing the MATLAB program.
Dispersion and Attenuation effects are explored. The simulation of Gaussian pulses
propagation through single mode optical fiber, simplifies the design of optical
communication system and make the design process more efficient, less expensive,
and faster.

View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Structure and optical properties of PANI/MWCNTs nanocomposites thin films prepared by plasma jet polymerization

Polyaniline Multi walled Carbon nanotubes (PANI/MWCNTs) nanocomposite thin films have been prepared by non-equilibrium atmospheric pressure plasma jet on glass substrate with different weight percentage of MWCNTs 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-55 nm and length - - 55 55 μm. the nanocomposite thin films were characterized by UV-VIS, XRD, FTIR, and SEM. The optical studies show that the energy band gap of PANI/MWCNTs nanocomposites thin films will be different according to the MWCNTs polyaniline concentration. The XRD pattern indicates that the synthesized PANI/MWCNTs nanocomposite is amorphous. FTIR reveals the presence of MWCNTs nanoparticle embedded into polyaniline. SEM surface images show that the MWCNT

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Fusion Splicing for a Large Mode Area Photonic Crystal Fiber with Conventional Single Mode Fiber

In this paper the experimentally obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas were reported. The physical mechanism of the splice loss and the microhole collapse property of photonic crystal fiber (PCF) were studied. By controlling the arc-power and the arc-time of a conventional electric arc fusion splicer (FSM-60S), the minimum loss of splicing for fusion two conventional single mode fibers (SMF-28) was (0.00dB), which has similar mode field diameter. For splicing PCF (LMA-10) with a conventional single mode fiber (SMF-28), the loss was increased due to the mode field mismatch.

View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
the aspect of the radiation superposed on the soliton pulse propagated in single mode optical fiber

the first part of the research involves investigate the aspect of the radiation superposed on the one bright soliton pulse propagated on ideal single mode

View Publication Preview PDF