Preferred Language
Articles
/
HxbCCYoBVTCNdQwCeZAE
Modified Single Mode Optical Fiber Ammonia Sensors Deploying PANI Thin Films

Modified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical fiber sensors coated with nanostructured thin films have been developed and gained popularity as practical devices towards gases with low concentrations. The development and characterization of the modified SMF sensing platforms including etched, tapered and etched-tapered platforms against ammonia will be presented in this chapter. These platforms were coated with PANI nanostructured thin film. The 50 μm etched-tapered SMF coated with PANI produced response, recovery times, and sensitivity of 58 s, 475 s, and 231.5%, respectively, in the C-band range. The limit of detection of the modified fiber sensor was 25 ppm. The developed sensors exhibit good repeatability, reversibility, and selectivity.

Crossref
View Publication
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
The Temperature Dependence of Photoconductivity in a-Ge20Se80 Thin Films

The photoconductivity and its dependence on light intensity have been investigated in a-Ge20Se80 thin films as a function of temperature between (293–323)K. The result showed that the photoconductivity and photosensitivity increase with increase of annealing temperature. This behavior is interpreted in terms of the dispersive diffusion –controlled recombination of localized electrons and holes.

View Publication
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of the Optical Properties of CuBr Thin Film

In this paper we have studied the optical properties of CuBr thin

films.  Different  sample  thicknesses  have  been  prepared  by  using thermal evaporation  technique with 14.4 runlsec as the average deposition rate and 1 00°C as the substrate temperature.

View Publication Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Influence of Optical Fiber Diameters on the Performance of Surface Plasmon Resonance Sensor

In this research, a sensor for chemical solutions was designed and formed using optical fiber-based on a surface Plasmon resonance technology. A single-mode optical fiber with three different diameters (25, 45 and 65) µm was used, respectively.  The second layer of the low refractive fiber was replaced by gold, which was electrically deposited at 40 µm thickness. For each of the three types of optical fiber, different saline concentrations (different index of refraction) were used to evaluate the performance of the refractive index sensor (chemical sensor) by measuring its sensitivity and resolutions. The highest values we could get for these two parameters were 240mm/RIU, and 6*10-5 RIU respectively, when the diameter of a

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
Acetic acid concentration estimation using plastic optical fiber sensor based surface Plasmon resonance

Optical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.

Crossref (8)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
the Polymer optical fiber sensor side-pumped with polymer clad doped lasing compounds

Optical fibers were produced by the system manufactured for this purpose and then, PMMA core of polymer optical fiber (POF) and PMMA doped Rhodamine B (RhB) claddings were studied and determine their UV–vis absorption and emission. The study adopted the mechanism of lateral pumping of the product polymer optical fiber by using laser with 404 nm excitation to study optical specifications of the factory fiber. It was noted that there were blue shift in maximum peak wavelength in absorption and fluorescence from the doped polymer before use it as clad. The obtained results by using the doping polymer with (RhB) for clad the amplified spontaneous emission ASE seems in fluorescence study. The side excitation shows that there were no an over

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Real-time Ultraviolet Radiation Sensor Based on Modified Cladding Optical Fibers Technology

      In this work, the performance of single-mode optical fibers (SMFs) for ultraviolet (UV) radiation monitoring and dosimetry applications is presented. In particular, this work will focus on the Radiation-Induced Absorption (RIA) phenomena in the Near-Infrared domain (NIR). Such phenomena play a very important role in the sensing mechanism for SMF. Single mode fibers with a diameter of 50 µm were used for this purpose. These fibers were dipped into germanium (Ge) solution with different concentrations (1, 3, and 5 wt%) to produce the sensing part of the sensor. For all optical fiber sensors under investigation, the results indicated the dependence of the RIA on the applied UV radiation energy. Also, a redshi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Optical Characteristics of CdSSe Films Prepared by Thermal Evaporation Technique

Thin films of cadmium sulphoselenide (CdSSe) have been prepared by a thermal evaporation method on glass substrate, and with pressure of 4x10-5 mbar. The optical constants such as (refractive index n, dielectric constant ?i,r and Extinction coefficient ?) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of (CdSSe) films is calculate from (?h?)2 vs. photon energy curve. CdSSe films have a direct energy gap, and the values of the energy gap were found to increase when increasing annealing temperature. The band gap of the films varies from 1.68 – 2.39 eV.

Crossref
View Publication Preview PDF
Publication Date
Sat Dec 17 2022
Journal Name
Iraqi Journal Of Laser
PDF Design Optical BPF Using Double Clad Fiber MZI for Free Space Optical Communication: Mohanad G. Khamees , Tahreer S. Mansour*

Abstract: A novel design of Mach Zehnder Interferometer (MZI) in terms of using special type of optical fiber that has double clad with graded distribution of the refractive index that can be easily implemented practically was suggested and simulated in this work. The suggested design is compact, rapid, and is simple to be modified and tested. The simulated design contains a MZI of 1546.74 nm of central wavelength that is constructed using special type of double clad optical fiber that has two different numerical apertures. The first aperture will supply single mode propagation via its core, while the second numerical aperture supports a zigzag wave propagation (multimode) in the first clad region. The interferometer’s

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Journal Of Materials Engineering And Performance
High Speed Shock Peening by Fiber Laser for Al Alloy 6061-T6 Thin Sheets

Under cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fa

... Show More
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Dec 11 2019
Journal Name
Aip
Cu doping effect on characterization of nano crystalline SnSe thin films

A thin film of (SnSe) and SnSe:Cu with various Cu ratio (0,3,5 and 7)% have been prepared by thermal evaporation technique with thickness 400±20 nm on glass substrate at (R.T). The effect of Cu dopants concentration on the structural, morphological, optical and electrical properties of (SnSe) Nano crystalline thin films was explored by using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), UV–Vis absorption spectroscopy and Hall Effect measurement respectively. X-ray diffraction analysis reveal the polycrystalline nature of the all films deposited with orthorhombic structure which possess a preferred orientation along the (111) plane. The crystalline sizes o

... Show More
Scopus (4)
Scopus