Preferred Language
Articles
/
HxbCCYoBVTCNdQwCeZAE
Modified Single Mode Optical Fiber Ammonia Sensors Deploying PANI Thin Films

Modified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical fiber sensors coated with nanostructured thin films have been developed and gained popularity as practical devices towards gases with low concentrations. The development and characterization of the modified SMF sensing platforms including etched, tapered and etched-tapered platforms against ammonia will be presented in this chapter. These platforms were coated with PANI nanostructured thin film. The 50 μm etched-tapered SMF coated with PANI produced response, recovery times, and sensitivity of 58 s, 475 s, and 231.5%, respectively, in the C-band range. The limit of detection of the modified fiber sensor was 25 ppm. The developed sensors exhibit good repeatability, reversibility, and selectivity.

Crossref
View Publication
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Physics
Study the optical properties of CuInS2 non stoichiometric thin films prepared by chemical spray pyrolysis method

Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated

View Publication Preview PDF
Publication Date
Sun Feb 26 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films

The structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t

... Show More
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films

The structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Ceramics International
Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films

The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.

... Show More
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study Influence of Substrate Temperature on Optical Properties of CdS Thin Films Prepared by Chemical Spray pyrolysis

This study aims to prepare Cadmium Sulphide (CdS) thin films using thermal Chemical Spray Pyrolysis (CSP) on glass of different temperatures substrate from cadmium nitrate solution. Constant thickness was (430 ± 20 nm) and the effect of substrate temperature on the optical properties of prepared thin films.

Optical properties have been studied from transmittance and absorbance spectral within wavelengths range (360 - 900 nm). The results show that all the prepared films have a direct electron transitions and optical energy gap between (2.31-2.44 eV). They also show that the transmittance and optical energy gap of films prepared from nitrate solution increase with increasing of substrate temperature, then transmittance start do

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Preparation and study of the structural and optical properties of Bi2S3 thin films by Spray pyrolysis method

In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study Of Thickness And Annealing Temperature Effect On Structural and Optical Properties For ZnO Thin Films

  In the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.   &nbsp

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Effects of copper doping and annealing on the structure and optical properties of ZnxCdx-1S thin films

Effect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2011
Journal Name
Thin Solid Films
Scopus (51)
Crossref (48)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Thickness on Some Optical Properties of Fe2O3 Thin Films Prepared by Chemical Spray Pyrolysis Technique

  The paper reports the influence of the thickness on the some optical properties of Fe2O3 thin films,which were prepared by chemical Spray  pyrolysis technique on glass substrate heated to 400Ëšc.The thickness of thin films (250,280,350)nm were measured by using weighting method. The optical properties include the absorbance and reflectance spectra,extinction coefficient,and real and imaginary part of the dielectric constant.The result  showed that the optical constant(k,εr,εi)decreased with the increase of the thickness.

View Publication Preview PDF