In this paper, we will introduce the concept of interval value fuzzy n-fold KU-ideal in KU-algebras, which is a generalization of interval value fuzzy KU-ideal of KU-algebras and we will obtain few properties that is similar to the properties of interval value fuzzy KU-ideal in KU-algebras, see [8]. Also, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
This study investigated the cubic intuitionistic fuzzy set of TM-algebra as a generalization of the cubic set. First, a cubic intuitionistic ideal and a cubic intuitionistic T-ideal are defined, followed by a discussion of their properties. Furthermore, the level set of a cubic intuitionistic TM-algebra is defined, and the relationship between a cubic intuitionistic level set and the cubic intuitionistic T-ideal is established. A novel definition of a cubic intuitionistic set under homomorphism is proposed, and several significant results are demonstrated.
In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreWe present the notion of bipolar fuzzy k-ideals with thresholds (
This paper refers to studying some types of ideals, specifically cubic bipolar ideals and cubic bipolar T-ideals of TM algebra. It also introduces a cubic bipolar sub-TM-algebra and several important properties of these concepts. The relationships between these ideals and characterizations of cubic bipolar T-ideals are investigated.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
FUZZY CONTROLLERS F'OR SINGLE POINT CONTROLLER-I (SPC-l) SYSTEMS