Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.
It is believed that Organizations around the world should be prepared for the transition to IPv6 and make sure they have the " know how" to be able to succeed in choosing the right migration to start time. This paper focuses on the transition to IPv6 mechanisms. Also, this paper proposes and tests a deployment of IPv6 prototype within the intranet of the University of Baghdad (BUniv) using virtualization software. Also, it deals with security issues, improvements and extensions of IPv6 network using firewalls, Virtual Private Network ( VPN), Access list ( ACLs). Finally, the performance of the obtainable intrusion detection model is assessed and compared with three approaches.
Compression is the reduction in size of data in order to save space or transmission time. For data transmission, compression can be performed on just the data content or on the entire transmission unit (including header data) depending on a number of factors. In this study, we considered the application of an audio compression method by using text coding where audio compression represented via convert audio file to text file for reducing the time to data transfer by communication channel. Approach: we proposed two coding methods are applied to optimizing the solution by using CFG. Results: we test our application by using 4-bit coding algorithm the results of this method show not satisfy then we proposed a new approach to compress audio fil
... Show Moresolation of candida spp. From cancer patients who suffered oral candidiasis due to immunodeficiency
In this research study failed Annunciation No. 10 for the fourth phase of the pressure of carbon dioxide of the company for Southern Fertilizers and repeated the failures more than once for the same gospel was a detailed study of the gospel included a series tests for properties Mechanical and Structural addition to the tests microscopic and scanning electron microscope shows m This study parameters and a failure Elal well as the existence of an old internal cracks in the metal of the Annunciation
this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
The aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key
... Show MoreThis present paper aim at knowing the process of evaluating the training program that could be applied in Maysan Health office for it significance and importance in field of management and vocational staff preparations of high scientific experience in different fields of Health. The society of research includes staffs working in Maysan Health Office , of specialists , dentists, pharmacists, laboratories, nursing and administrators. Their number is 100 employees, the researcher has designed questionnaire by depending on "Kirkpatrick" for assessing the training . The researcher has used thorough survey and has entailed 90 questionnaire,
... Show MoreIn this research was to use the method of classic dynamic programming (CDP) and the method of fuzzy dynamic programming (FDP) to controlling the inventory in N periods and only one substance ,in order to minimize the total cost and determining the required quantity in warehouse rusafa principal of the ministry of commerce . A comparison was made between the two techniques، We found that the value of fuzzy total cost is less than that the value of classic total cost
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show More