Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.
In this paper, the topic of forecasting the changes in the value of Iraqi crude oil exports for the period from 2019 to 2025, using the Markov transitional series based on the data of the time series for the period from January 2011 to November 2018, is real data obtained from the published data of the Central Agency Of the Iraqi statistics and the Iraqi Ministry of Oil that the results reached indicate stability in the value of crude oil exports according to the data analyzed and listed in the annex to the research.
Keywords: Using Markov chains
Transportation networks impact millions of people daily. Their efficiency immediately affects travel time, safety, and environmental sustainability. Unfortunately, various issues hinder the expected performance and efficiency of these networks. Traffic congestion is an up-to-date issue in the urban environment. Fuel consumption is high because travel time has increased, which has a passive environmental impact. Extensive research has been conducted to progress the intelligent transportation systems installed on communication networks and information to treat this congestion. However, there is a significant amount of affront residue in combining real-time data, estimation analytics, and 5G abilities effectively. This paper offers a n
... Show MoreMicroalgae have been increasingly used for wastewater treatment due to their capacity to assimilate nutrients. Samples of wastewater were taken from the Erbil wastewater channel near Dhahibha village in northern Iraq. The microalga Coelastrella sp. was used in three doses (0.2, 1, and 2g. l-1) in this experiment for 21 days, samples were periodically (every 3 days) analyzed for physicochemical parameters such as pH, EC, Phosphate, Nitrate, and BOD5, in addition to, Chlorophyll a concentration. Results showed that the highest dose 2g.l-1 was the most effective dose for removing nutrients, confirmed by significant differences (p≤0.05) between all doses. The highest removal percentage was
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreThis study examined the correlation between binder-level fatigue properties and mixture-level cracking resistance in asphalt binders modified with five Nanomaterials (NMs): Nano-Silica (NS), Nano-Alumina (NA), and Nano-Titanium dioxide (NT) at 2%, 4%, and 6% as well as Nano-Zinc oxide (NZ) and Carbon Nanotubes (CNTs) at 1%, 2%, and 3%. Modified binders were subjected to Rolling Thin-Film Oven Test (RTFOT) and Pressure Aging Vessel (PAV) aging and tested at 25 °C using the Linear Amplitude Sweep (LAS) test to determine fatigue life (Nf) and the fatigue parameter G*.sin δ. The corresponding asphalt mixtures were evaluated using the IDEAL-CT test. The results indicated strong correlations between binder and mixture performance for
... Show MoreLearning programming is among the top challenges in computer science education. A part of that, program visualization (PV) is used as a tool to overcome the high failure and drop-out rates in an introductory programming course. Nevertheless, there are rising concerns about the effectiveness of the existing PV tools following the mixed results derived from various studies. Student engagement is also considered a vital factor in building a successful PV, while it is also an important part of the learning process in general. Several techniques have been introduced to enhance PV engagement; however, student engagement with PV is still challenging. This paper employed three theories—constructivism, social constructivism and cognitive load t
... Show More|
Background: During the pandemic, Corona virus forced many people, especially students, to spend more time than before on the computer and smartphone to study and communicate. The poor posture of the body may have worse effect on its body parts , most of which is the cervical spine (forward head posture). Objective: To assess the incidence of neck pain and the associated factors among undergraduate medical students related to position during E learning Subjects and Methods: Cross-sectional study was conducted among medical students in three Iraqi universities during 2021. The sample size w |