In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two types of regular spaces have been presented, namely the topological space Rp and the topological space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect of functions on them, have been studied. In addition several theorems have been proved regarding the sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced with examples.
Let be a non-zero right module over a ring with identity. The weakly second submodules is studied in this paper. A non-zero submodule of is weakly second Submodule when , where , and is a submodule of implies either or . Some connections between these modules and other related modules are investigated and number of conclusions and characterizations are gained.
Weibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.
... Show MoreMany codiskcyclic operators on infinite-dimensional separable Hilbert space do not satisfy the criterion of codiskcyclic operators. In this paper, a kind of codiskcyclic operators satisfying the criterion has been characterized, the equivalence between them has been discussed and the class of codiskcyclic operators satisfying their direct summand is codiskcyclic. Finally, this kind of operators is used to prove that every codiskcyclic operator satisfies the criterion if the general kernel is dense in the space.
The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.
Many letters and theses written on the subject of consensus, as well as in measurement,
But we tried to address a topic of consensus
Building a blind measuring guide.
We have tried to explain the meaning of convening, then the statement of consensus in language and terminology and then the statement of measurement
Also, we have shown the types of consensus mentioned by the jurists, and this is how much was in the first topic, either
The second section included the statement of the doctrines of the blind in the matter, and then the evidence of each doctrine and discussed.
We followed it with the most correct opinion statement and concluded the research with some of the conclusions we reached through
search.
In this paper, we study the effects of coherent and incoherent illumination on the optical imaging system. The effects were studied qualitatively in terms of Point Spread Function (PSF) and Modulation Transfer Function (MTF), and quantitatively in terms of Root Mean Square Error (RMSE). Different values of radius of aperture were investigated in the presence and absence of spherical aberration with various magnitudes of spherical aberration (M=1, 2, and 3). The experiments were performed using homogeneous media.
The results show that imaging with incoherent illumination is better than imaging with coherent illumination, especially for small aperture. Also, we found that the effects of spherical aberration
... Show MoreDynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.