In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two types of regular spaces have been presented, namely the topological space Rp and the topological space S-Rp. The properties of these two spaces and their relationship with each other, as well as the effect of functions on them, have been studied. In addition several theorems have been proved regarding the sufficient and necessary conditions to make the topological spaces Rp-regular or S-Rp-regular. The above concepts have been linked with a new type of Hausdorff space and the concepts under study are reinforced with examples.
The partial level density PLD of pre-equilibrium reactions that are described by Ericson’s formula has been studied using different formulae of single particle level density . The parameter was used from the equidistant spacing model (ESM) model and the non- equidistant spacing model (non-ESM) and another formula of are derived from the relation between and level density parameter . The formulae used to derive are the Roher formula, Egidy formula, Yukawa formula, and Thomas –Fermi formula. The partial level density results that depend on from the Thomas-Fermi formula show a good agreement with the experimental data.
In this paper, we define some generalizations of topological group namely -topological group, -topological group and -topological group with illustrative examples. Also, we define grill topological group with respect to a grill. Later, we deliberate the quotient on generalizations of topological group in particular -topological group. Moreover, we model a robotic system which relays on the quotient of -topological group.
The aim of this paper is to introduce a new type of proper mappings called semi-p-proper mapping by using semi-p-open sets, which is weaker than the proper mapping. Some properties and characterizations of this type of mappings are given.
This paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
In this article, the additivity of higher multiplicative mappings, i.e., Jordan mappings, on generalized matrix algebras are studied. Also, the definition of Jordan higher triple product homomorphism is introduced and its additivity on generalized matrix algebras is studied.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
The main purpose of this paper is to introduce and prove some fixed point theorems for two maps that
satisfy -contractive conditions with rational expression in partially ordered metric spaces, our results improve and unify a multitude of fixed point theorems and generalize some recent results in ordered partially metric space.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
In this paper we introduce a new class of operators on Hilbert space. We
call the operators in this class, n,m- powers operators. We study this class
of operators and give some of their basic properties.
In the present paper, we introduce two subclasses, S*C(,,g,s,d) and TS*C(, ,g, s,d), of analytic functions . Coefficients bounds for these subclasses are calculated.
The main purpose of this article is to originate characteristic properties of the functions in the above subclasses.