This work deals with the study of the morphodynamics, history of development of landforms and the origin of the Ga’ara depression. The depression is a suboval erosional topographic feature extending in E-Wdirection and located about 50 km north of Rutba Town, at the Western Desert of Iraq. The area is characterized by fresh and clean surfaces, scarcity of vegetation, abundance of rills, intense drainage and immature soil. These clues indicate that the erosion in the study area is effective. Four types of erosion features are recognized in this area namely sheet, rill, badland and wind erosion. The extent of the wind erosion depends on its position in relation to the prevailing wind direction. Water, wind and gravity are the main agents of erosion although the former seems more effective. In general, the valleys are dense in the hard rocks which indicate intensive erosion. Two types of drainage pattern can be distinguished in the study area, a dendritic pattern, especially at the exposure area of the Mulussa dolostone, and a centripetal pattern at the central part of the depression at the confluence of the main wadis. The valleys are V-shaped in their upper reaches and gradually change to flat-bottom shallow valleys in their lower reaches. Two major types of mass wasting are recognized, namely, rock fall and slump. Rock fall is the most common process whereby most of the talus accumulates at the base of the cliff. Slump is frequent at the south and southwestern rims of the depression. The slope surfaces are generally composite of the type free-face concave pediment. The depression is asymmetrical having steeper slopes in the south and thewestwhereas the northern and eastern scarps are wider and gentler, respectively. History of landform development is investigated in the Ga’ara area. Seven episodes are distinguished according to emergence and paleoclimatic conditions. The landforms of the study area were formed and further developed during the emergence episodes. The history of the development of the Ga’ara depression is studied too.
Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
Objective(s): This study aimed to evaluate job satisfaction among nurses working at primary health care centers in Samawa City.
Methodology: A Descriptive evolutional study has been carried out during the period from 1 February 2022 to 1 June 2022. A nonprobability (convenience) sample of (200) nurse were selected from different educational level. A questionnaire format is developed for the purpose of fulfilling the objectives of the study. Content validity of the questionnaire and reliability has been determined. Data are analyzed using IBM SPSS version 19 software (2010).
Results: The findings indicate that 52% of nurses are showing high level of job satisfa
... Show MoreBackground: Plaque retention during fixed orthodontic therapy is an important cause of developing enamel demineralization. The purpose of this study was to evaluate the effect of different brackets types on the count of Streptococcus Mutans in orthodontic patients using conventional fluoridated toothpaste. Materials and Methods: Plaque samples were collected from maxillary 1st premolar teeth of twenty right handed patients (using split mouth technique) before bonding, after 48 hrs of bonding using tooth brush only, and after 2 weeks of using fluoridated toothpaste. Stainless steel bracket was bonded on right first premolar while the left one was bonded with sapphire bracket. The calculation of the Streptococcus Mutans count was done usin
... Show MoreAPDBN Rashid, Southern African Linguistics and Applied Language Studies, 2023
The extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100˚C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6:1 ml: g amount of water to eucalyptus leaves Ratio.
Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co
... Show MoreBiodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show More