In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of varying the parameters. It is observed that the system has a chaotic dynamics.
POSSIBILITY OF APPLICATION THE BALANCED SCORECARD IN THE IRAQI INDUSTRIAL COMPANIES: A PROPOSED MODEL
For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreIn this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fifth order with delay by using the Lyapunov-Krasovskii functional approach, we obtain some conditions of instability of solution of such equation.
The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
This paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.
Ajloun Governorate is considered the smallest governorate in Jordan in terms of area, and its population density rises to 472.2 people/ km2 and is distributed among five municipalities. The Al-Shafa municipality is one of these municipalities. Al-Shafa is rich in its natural and human resources, and the first municipal council was established in it in 2001.
This study seeks to achieve the following general objective: inventory the natural and human resources that Al-Shafa enjoys, and highlight the role of Al-Shafa municipality in achieving and settling sustainable development for the local community. Certain content, which are: the comprehensive approach to geographical reality, the descriptive
... Show More