Preferred Language
Articles
/
HhYxlocBVTCNdQwCCFco
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Applied Science & Technology
The Use of Cubic Bezier Interpolation, Biorthogonal Wavelet and Quadtree Coding to Compress Color Images
...Show More Authors

In this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Apr 01 2010
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
The Invariant Moments Based With Wavelet Used To Decide the Authintication and Originality of Images
...Show More Authors

Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison between the estimated of nonparametric methods by using the methodology of quantile regression models
...Show More Authors

This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them

Scopus
Publication Date
Sun Mar 01 2009
Journal Name
Diyala Journal Of Human Research
Stability of the Finite Difference Methods of Fractional Partial Differential Equations Using Fourier Series Approach
...Show More Authors

The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).

View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy logic in the estimate of reliability function for k - components systems
...Show More Authors

Abstract:

One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 03 2010
Journal Name
Journal Of Educational And Psychological Researches
The Effect of Applying K-W-L Technique on Teaching ESP Students
...Show More Authors

         Over the last few decades, many instructors have been trying all kinds of teaching methods, but without benefit. Nevertheless, in the 1986, a new technique is appeared which called K-W-L technique, it  is specified for reading comprehension passages because reading  skill is not easy matter for students for specific purposes (ESP).therefore, the K-W-L technique is a good one for thinking and experiences. To fulfill the aims and verify the hypothesis which reads as follows" it is hypothesized that there are no significant differences between the achievements of students who are taught according to K-W-L technique and those who are taught according to the traditional method

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
K-Nearest Neighbor Method with Principal Component Analysis for Functional Nonparametric Regression
...Show More Authors

This paper proposed a new  method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates  are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It  utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA))  for measureing the closeness between curves.  Root Mean Square Errors is used for the  implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when  the cov

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
African landlocked countries problems and outlets in the study and classification of geo-political
...Show More Authors

Landlocked countries are displayed geopolitical new geo-political and intended to
countries that do not have sea views, a phenomenon present in four continents of the world
are: Africa, Europe, and Asia, and South America and the number arrived at the present time
to the (44) state the largest number of them in the continent it arrived in Africa (16) countries
in Asia (13) countries and Europe (13) In the State of South America two. This phenomenon
emerged due to the division of federations and empires and colonial treaties and others. But
the negative effects suffered by these countries may vary from one country to another, since
these countries in the continent of Europe, for example, is different from the same cou

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (10)
Crossref (4)
Scopus Crossref