Mobile ad hoc network security is a new area for research that it has been faced many difficulties to implement. These difficulties are due to the absence of central authentication server, the dynamically movement of the nodes (mobility), limited capacity of the wireless medium and the various types of vulnerability attacks. All these factor combine to make mobile ad hoc a great challenge to the researcher. Mobile ad hoc has been used in different applications networks range from military operations and emergency disaster relief to community networking and interaction among meeting attendees or students during a lecture. In these and other ad hoc networking applications, security in the routing protocol is necessary to protect against malicious attacks as well as in data transmission. The goal of mobile ad hoc security is to safeguard the nodes’ operation and ensure the availability of communication in spite of adversary nodes. The node operations can be divided into two phases. The first phase is to discover the route (s) path. The second phase is to forward the data on the available discovered routes. Both stages need to protect from attacks; so many protocols have been proposed to secure the routing and data forwarding. This is a review study to mobile ad hoc protocols for securing routing as well as protocols for securing packets forwarding. Furthermore, it will present the characteristics and the limitations for each protocol and attributes.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreRationale, aims and objectives: A review of studies published over the last six years gives update about this hot topic. In the middle of COVID-19 pandemic, this study findings can help understand how population may perceive vaccinations. The objectives of this study were to review the literature covering the perceptions about influenza vaccines and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM). Methods: A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions, and Middle East. Empirical studies that dealt with people/ HCW perceptions of influenza vaccine in the Middle East and writt
... Show MoreThe Ilkhanid Mongols (651-756 AH / 1253-1355 AD) were interested in urbanization and construction in keeping with civilized countries and to have an architectural imprint that competed with the neighboring nations. The Ilkhan Öljeitü Muḥammad Khudābandeh (703-716 AH / 1303-1316 AD), known for his love of building and construction, wanted to have a capital that would immortalize his name and history, so he ordered its construction to compete with contemporary cities, and he summoned workers and engineers from all over the world to contribute to its construction. The city has several educational and service institutions such as schools, ribats, khanqas, mosques, hospitals, markets, and baths, as well as a mausoleum for him, which
... Show MoreThis research paper tries to show the significance of the narrative structure in the television advertisement and its connotations. The researchers chose the annual advertisement of Zain Mobile Telecommunication Company for the year 2020, which shed light on the global Corona pandemic crisis. The idea of the advertisement won wide approval as it focused on the suffering that everyone is witnessing like medical and security personnel in particular, and family relationships consequences.
In addition to the positive global interaction with the message presented by the Company in these exceptional circumstances. The advertisement, which lasted for 2.35 minutes, exceeded 13 million views in a short period of time. This prompted us to choos
Short Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Ato
... Show MoreExploring the antibacterial potential of neem oil (Azadirachta indica) in combination with gentamicin (GEN) against pathogenic molds, especially Pseudomonas aeruginosa, has drawn concern due to the quest for natural treatment options against incurable diseases. Prospective research directions include looking for natural cures for many of the currently incurable diseases available now. microbial identification system, were used to identify the isolates. The research utilized a range of methods, such as the diffusion agar well (AWD) assays, TEM (transmission electron microscopy) analysis, minimum inhibitory concentration (MIC) assays, and real-time PCR (RT-qPCR) to analyze bacterial expression and the antibacterial action of neem oil (Azadira
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show More