The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussian Mixture Model (GMM). This will help find the best way to separate colors in aerial images. According to a thorough comparative study, PSNR and correlation metrics show that K-Medoids outperform other clustering techniques in terms of segmentation quality. Also, the effect of changing the number of clusters on the image quality was studied; when the number of clusters increases, the image quality increases. It was found that when K-Medoids were used, the PSNR and correlation were 35.57 and 0.99, respectively. When FCM and GMM were used, they were 35.54, 0.99, 31.67, and 0.97, respectively, when the number of clusters was 12.
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreThe present work involved preparation of new substituted and unsubstituted and poly imides (1-17) using reaction of acryloyl chloride with different amides (aliphatic ,aromatic) in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating – the structure confirmation of all polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy ,thermal analysis (TG) for some polymers confirmed their thermal stabilities . Other physical properties including softening and melting points, PH and solubility of the polymers were also measured
Abstract
In this work, diabetic glucose concentration level control under disturbing meal has been controlled using two set of advanced controllers. The first set is sliding mode controllers (classical and integral) and the second set is represented by optimal LQR controllers (classical and Min-, ax). Due to their characteristic features of disturbance rejection, both integral sliding mode controller and LQR Minmax controller are dedicated here for comparison. The Bergman minimal mathematical model was used to represent the dynamic behavior of a diabetic patient’s blood glucose concentration to the insulin injection. Simulations based on Matlab/Simulink, were performed to verify the performance of each controll
... Show MoreCritical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge
... Show MoreTwelve species from Brassicaceae family were studied using two different molecular techniques: RAPD and ISSR; both of these techniques were used to detect some molecular markers associated with the genotype identification. RAPD results, from using five random primers, revealed 241 amplified fragments, 62 of them were polymorphic (26%).
ISSR results showed that out of seven primers, three (ISSR3, UBC807, UBC811) could not amplify the genomic DNA; other primers revealed 183 amplified fragments, 36 of them were polymorphic (20%). The similarity evidence and dendrogram for the genetic distances of the incorporation between the two techniques showed that the highest similarity was 0.897 between the va
... Show MoreThis study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show More