The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussian Mixture Model (GMM). This will help find the best way to separate colors in aerial images. According to a thorough comparative study, PSNR and correlation metrics show that K-Medoids outperform other clustering techniques in terms of segmentation quality. Also, the effect of changing the number of clusters on the image quality was studied; when the number of clusters increases, the image quality increases. It was found that when K-Medoids were used, the PSNR and correlation were 35.57 and 0.99, respectively. When FCM and GMM were used, they were 35.54, 0.99, 31.67, and 0.97, respectively, when the number of clusters was 12.
Due to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreSearch Results at the International Journal of Science and Research (IJSR)
Aim: The reduction in the amount of marginal bone is the most important demand for the long term success of dental implants. This prospective clinical study was aimed to investigate the marginal bone loss of early loaded SLActive implants with different dimensions and surgical approaches. Materials and methods Fifteen patients aged from 18 to 60 years were divided into 2 groups (flapped and flapless approach) that underwent delayed implant placement protocol with SLActive implants. The marginal bone level was estimated by cone-beam computed tomography during three different periods: preoperatively, 8 weeks after surgery and 24 weeks after loading of the prosthesis. Results: The mean value of marginal bone level was not significantly chan
... Show MoreUrea formaldehyde resin was prepared by using basic media by yield 95%. The Remaining of ureaplasts resin were prepared in acetic acid media by high yield. Alkyde resins were prepared by condensation polymerization by react Succinic, Maleic, Phthalic anhydrides with Ethylene glycol or Glycerol. Select samples of the prepared alkyde resins were mixed with Azo dyes in special ratio. The mixtures were used as coatings for wood, and compaised with pure dyes. The Coating that some alkyde resins showed better adhesion from using dyes alone. Preparation of wood coating by mixing ureaplast resins and alkyde resins with Azo dyes in special ratios. The coating showed better adhesion, brighter colors and better resistance to heat from Preceding coat
This research deals with the fact that arts exit from their familiar context in practice and enter in the context of the fantasy and exoticism picture. In order to understand the theatrical phenomenon and know the way of its production of the fantasy picture, especially the acting performance in its transitions between the real and fantasy. This study consists of: an introduction of the research in which the researcher presented the research problem, importance and objectives.
The theoretical framework dealt with founding a theoretical part for the research consisting of two sections: the first (fantasy: the concept and the working) and the second (techniques of acting perfo
... Show MoreThe energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrien
... Show MoreGenerally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regre
... Show More