The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussian Mixture Model (GMM). This will help find the best way to separate colors in aerial images. According to a thorough comparative study, PSNR and correlation metrics show that K-Medoids outperform other clustering techniques in terms of segmentation quality. Also, the effect of changing the number of clusters on the image quality was studied; when the number of clusters increases, the image quality increases. It was found that when K-Medoids were used, the PSNR and correlation were 35.57 and 0.99, respectively. When FCM and GMM were used, they were 35.54, 0.99, 31.67, and 0.97, respectively, when the number of clusters was 12.
Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreUrban expansion and its environmental and safety effects are one of the critical information needed for future development planning, safety considerations and environmental management. This work used two methods to monitor urban expansion and it's environmental and safety effects, the first is based on Google Maps for the years 2002 and 2010, and the second was the usage of spatial videos for the year 2013. Although the usage of satellite images is critical to know and investigate the general situation and the total effects of the expansion on a large piece of area, but the Spatial videos do a very detailed fine scale investigation, site conditions regarding both environmental and safety cannot be easily distinguished fr
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MoreHypoxic training, which in turn is one of the methods adopted in sports training methods, especially in activities that depend on the aerobic system in its performance, which includes training with a lack of oxygen by reducing its molecular pressure, since this method targets functional organs and works temporary responses during training and permanent responses After training as an adaptation to these devices as a result of training in this way, the study aimed to identify the effect of hypoxic exercises using the training mask and the extent of the change in some biochemical indicators, in addition to that to identify the effect of these exercises on the indicator of energy expenditure and )VMA) and the achievement of the effectiveness of
... Show MoreIn this paper we use the Markov Switching model to investigate the link between the level of Iraqi inflation and its uncertainty; forth period 1980-2010 we measure inflation uncertainty as the variance of unanticipated inflation. The results ensure there are a negative effect of inflation level on inflation uncertainty and all so there are a positive effect of inflation uncertainty on inflation level.  
... Show More
In this paper, the using of Non-Homogenous Poisson Processes, with one of the scientific and practical means in the Operations Research had been carried out, which is the Queuing Theory, as those operations are affected by time in their conduct by one function which has a cyclic behavior, called the (Sinusoidal Function). (Mt / M / S) The model was chosen, and it is Single Queue Length with multiple service Channels, and using the estimating scales (QLs, HOL, HOLr) was carried out in considering the delay occurring to the customer before his entrance to the service, with the comparison of the best of them in the cases of the overload.
Through the experiments
... Show MoreChannel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show More