The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussian Mixture Model (GMM). This will help find the best way to separate colors in aerial images. According to a thorough comparative study, PSNR and correlation metrics show that K-Medoids outperform other clustering techniques in terms of segmentation quality. Also, the effect of changing the number of clusters on the image quality was studied; when the number of clusters increases, the image quality increases. It was found that when K-Medoids were used, the PSNR and correlation were 35.57 and 0.99, respectively. When FCM and GMM were used, they were 35.54, 0.99, 31.67, and 0.97, respectively, when the number of clusters was 12.
Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect
... Show MoreBackground: This study aimed to evaluate the effect of zirconia different surface treatments (primer, sandblast with 50μmAl2O3, Er,Cr:YSGG laser) on shear bond strength between zirconia surface and resin cement. Material and methods: Sixty presintered Y-TZP zirconia cylinder specimens (IPS e.max ZirCAD, Ivoclar vivadent) will be fabricated and sintered in high temperature furnace of (1500 C for 8 hours) according to manufacturer’s instructions to the selected size and shape of (5mm. in diameter and 6mm in height). All specimens were ground flat using 600.800.1000.1200, aluminum oxide abrasive paper to obtain a standardized surface roughness. Surface roughness values were then recorded in µm using surface roughness tester (profi
... Show More
Background: Essential oils extracted from plants have been widely used in antimicrobial activity, particularly the Callistemon viminalis, with a high number of essential oils extracted. Objectives: To identify the chemical composition of essential oil derived from Callistemon viminalis and evaluates its antimicrobial activity against selected bacterial and fungal strains. Subjects and methods: During the study, the antimicrobial activity of different selected essential oils on some bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, and Streptococcus pneumonia) and fungus (Candida albicans) was evalua |
As a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show MoreA medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show Moreيعد التقطيع الصوري من الاهداف الرئيسة والضرورية في المعالجات الصورية للصور الرقمية، فهو يسعى الى تجزئة الصور المدروسة الى مناطق متعددة اكثر نفعاً تلخص فيها المناطق ذات الافادة لصور الاقمار الصناعية، وهي صور متعددة الاطياف ومجهزة من الاقمار الصناعية باستخدام مبدأ الاستشعار عن بعد والذي اصبح من المفاهيم المهمة التي تُعتمد تطبيقاته في اغلب ضروريات الحياة اليومية، وخاصة بعد التطورات المتسارعة التي شهد
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in