Photoplethysmography (PPG) is a non-invasive optical technique that employs variations in light absorption produced by alteration in the blood volume in capillaries at the skin during the cardiac cycle. This study aims to understand factors related to PPG morphology; a hand-elevation, the study has modified blood flow to and from the finger was conducted in the laboratory. It is widely established that the position of the limb relative to the heart has an effect on blood flow in arteries and venous. Peripheral digital pulse wave (DPW) signals were obtained from 15 healthy volunteer participants during hand-elevation, and hand-lowering techniques wherein the right hand was lifted and lowered relative to heart level, while the left hand remained static. The pulse width, time to peak (TTP), the time to the maximum slope (TTMas) were computed from 30sec DPW signals at three positions of the right hand with regard to heart level, i.e. 35 cm above heart level (+35 cm), at the level of the heart (0 cm), and 35 cm below the level of the heart (-35 cm). DPW characteristics were found to alter with hand position. On lowering the hand to -35 cm relative to heart level, DPW width from the middle finger increased by (6%), but lowering the arm decreased the TTP (by 11 %), TTMas (by 18 %). These changes in time-dependent DPW indices may be attributed to changes in hydrostatic pressure and the venoarterial reflex that changes the blood vessels filling from completely filled one at -35 cm due to arterial vasoconstriction and decreased venous return to partially emptied blood vessels due to arterial vasodilatation and increased venous return at +35 cm. It was assumed that these time-dependent morphological DPW indices alterations were controlled by changes in downstream venous resistance rather than arterial or arteriolar, resistance. Keywords: photo plethysmography, hand elevation, vasoconstriction, vasodilation, vascular mechanics
The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recogniti
... Show MoreIn the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM), blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depe
... Show MoreA novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
One of the main environmental problems which affect extensively the areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Landsat satellite (TM & ETM+) images have been analyzed to study soil pollution (Exacerbation of salinity in the soil without the use of abandoned agricultural for a long time) at west of Baghdad city of Iraqi country for the years 1990, 2001 & 2007. All of the th
... Show More