Abstract Background: Timely diagnosis of periodontal disease is crucial for restoring healthy periodontal tissue and improving patients’ prognosis. There is a growing interest in using salivary biomarkers as a noninvasive screening tool for periodontal disease. This study aimed to investigate the diagnostic efficacy of two salivary biomarkers, lactate dehydrogenase (LDH) and total protein, for periodontal disease by assessing their sensitivity in relation to clinical periodontal parameters. Furthermore, the study aimed to explore the impact of systemic disease, age, and sex on the accuracy of these biomarkers in the diagnosis of periodontal health. Materials and methods: A total of 145 participants were categorized into three groups based on their basic periodontal examination index, with 20 in the periodontally healthy group, 50 in the gingivitis group, and 75 in the periodontitis group. Salivary LDH was measured using the rate of nicotinamide adenine dinucleotide (NADH) oxidation, to measure the kinetics of LDH activity, while total protein was measured using the Lowry method. Descriptive and analytical statistical analyses were performed to examine the associations between the variables and biomarkers. Results: The results of the study demonstrated that salivary LDH was 72% sensitive, while salivary total protein was 78% sensitive in correlation to clinical periodontal parameters. The accuracy of the test was not influenced by sex, but age had a significant effect on both biomarkers, particularly LDH. Systemic disease was another factor that significantly affected the accuracy of the test. Conclusions: Although salivary LDH and total protein show promise as biomarkers for screening periodontal disease, their interpretation may be impacted by age and systemic disease.
Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreThe environment contemporary works for the insurance companies have seen a number of technological developments and changes rapidly in light of the intense competition in the insurance market, and this affects human behavior in the workplace, and to director in his work needs to be a set of managerial skills. so we find compensation activity in companies insurance needs a high managerial skills, so that compensation, director of the settlement procedure successfully. So research aims to test two hypotheses two major belongings variables search using some statistical methods to extract the results and interpretation and analysis (such as arithmetic mean, standard deviation, percentages, Alpha Cronbach's coefficient, Pearson correlation co
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show MoreThis work introduces the synthesis and the characterization of N-doped TiO2 and Co3O4 thin films prepared via DC reactive magnetron sputtering technique. N-doped TiO2 thin films was deposited on indium-tin oxide (ITO) conducting substrate at different nitrogen ratios, then the Co3O4 thin film was deposited onto the N-doped TiO2 layer to synthesize a double-layer TiO2-N/Co3O4 Photoelectrochromic device. Several techniques were used to characterize the produces which are x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy. The Photoelectrochromic device was characterized by UV–Vis spectroscopy and the results show that the double-layer N-dope
... Show More