Crude oil still affects many countries because it is one of the essential fuel sources. It makes life more manageable in modern communities and cannot be overstated because it is easy to use and find. However, the pollution caused by its use in industries such as mining, transportation, and the oil and gas business, especially soil pollution, cannot be ignored. Soil pollution is an issue in most communities because it influences people and ecology. Accidental infusions and spills of ore oils are prevalent occurrences leading to the entire or fractional exchange of the soil pore fluid by oil-contaminated soils that have affected the geotechnical engineering properties. The liquid limitations for polluted soil grades silty loam and sandy loam decreased by 38% and 16%. Oil contamination leads to decreased permeability; the permeability values for sandy loam soil decreased from (3.6 × 10−6 to 0.25 × 10−6 cm/s) when the oil content increased from 0 to 16%; however, the permeability values for silty loam decreased from (2.6 × 10−6 to 0.25 × 10−6) cm. The current study results exhibit that the geotechnical properties of contaminated soil with oil slag can be modified upon adding cement at different weight percentages (3, 5, and 7%) to the soil. The Atterberg limits and specific gravity of the soil were noticeably reduced when it was stabilised with cement, as well as because oil spills on soil significantly influence the environment. So, there is an immediate and critical need for efficiently removing petroleum hydrocarbon pollutants from contaminated soil. Bioremediation is a new technology gaining interest worldwide to clean up sites that have polluted petroleum hydrocarbons.
Films of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .
In this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
This study is conducted to investigate the validity of using different levels of Rustumiya sewage water for irrigation and their effects on corn growth and some of the chemical properties of the soil such as electrical conductivity and soil pH in extract soil paste , the micro nutrient content in soil and plant which are ( Fe , Mn , Zn , Cu , Cd , Pb ). Three levels of sewage water ( 0 , 50 , 100 )% in two stages were used ,the three levels of wastewater ( without soil fertilization ) were used in the first stage , Where 80 Kg N /D+50Kg P2O5 /D was added to the soil as fertilizer in the control (0%) treatment and 40 Kg N/D+25Kg P2O5/D were added to 50 and 100% levels in the second stage .Corn seeds were planted in 12kg plastic pots in Com
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
Porous silicon (PS) layers were formed on n-type silicon (Si) wafers using Photo- electrochemical Etching technique (PEC) was used to produce porous silicon for n-type with orientation of (111). The effects of current density were investigated at: (10, 20, 30, 40, and50) mA/cm2 with etching time: 10min. X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon. The maximum crystal size of Porous Silicon is (33.9nm) and minimum is (2.6nm) The Atomic force microscopy (AFM) analysis and Field Emission Scanning Electron Microscope (FESEM) were used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of p
... Show MoreA numerical investigation has been performed to examine the effect of fluorine concentration on the chain reaction mechanisms and parameters of hydrogen fluoride (HF) chemical laser. The practical difficulties associated with this type of lasers impose that an alternative route might be quite useful. Thus, particular attention was paid to develop a computer program to investigate various processes. The results of this computer simulation program proved their credibility when compared with the little published data. This computer program is called Reaction Rate Simulation Model (RRSM). An entirely new approach to emulate the reaction mechanisms has been followed. The effectiveness of reaction rates in the processes of HF lase
... Show MoreThe wide use of pesticides in recent years leads to rapid distribution of these pollutants in the environment (air, water and soil).They were transported by means of air or water to biological ecosystems. They become more toxic through the processes of biological magnification while some of them persist for along period.The aim of this work is to show the negative effect that chemical pesticides causes, and in the same to show their side effect on the environment and health in Iraq. We could conclude that the bad use of these chemicals could cause an urgent impact now or in the future. Governmental offices dealing with these materials should take the right measures to minimize the danger and the misuse of these chemicals by seeking alternat
... Show MoreIn this work a hybrid composite materials were prepared containing matrix of polymer (polyethylene PE) reinforced by different reinforcing materials (Alumina powder + Carbon black powder CB + Silica powder). The hybrid composite materials prepared are: • H1 = PE + Al2O3 + CB • H2 = PE + CB + SiO2 • H3 = PE + Al2O3 + CB + SiO2 All samples related to electrical tests were prepared by injection molding process. Mechanical tests include compression with different temperatures and different chemical solutions at different immersion times The mechanical experimentations results were in favour of the samples (H3) with an obvious weakness of the samples (H1) and a decrease of these properties with a rise in temperature and the increasing
... Show MoreThis article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.