Preferred Language
Articles
/
HReUN48BVTCNdQwC6WMn
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from the whole features set. Thus, it obtains efficient botnet detection results in terms of F-score, precision, detection rate, and  number of relevant features, when compared with DT alone.

Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Tropical Journal Of Natural Product Research
Detection of Herpes Simplex Virus Type 1 in Patients Affected by Conjunctivitis
...Show More Authors

Herpes simplex virus (HSV) is a common human pathogen that causes severe infections in newborns and immunocompromised patients. Conjunctivitis or corneal epithelial keratitis is caused by HSV type 1 all over the world and at all times of the year. The present study was aimed at detecting HSV in patients suffering from conjunctivitis. One hundred and ten (110) clinical samples (90 patients and 20 controls, both males and females) of eye conjunctiva swabs were collected from patients of different ages. The samples were analyzed using qPCR and ELISA techniques. The qPCR results revealed that HSV was present in 47 (52.2%) of the 90 patients who were infected. Of these patients, 25 (48.0%) were males and 22 (57.8%) were females, indicati

... Show More
View Publication Preview PDF
Scopus
Publication Date
Tue Jan 01 2019
Journal Name
Biochemical And Cellular Archives
Phenotypic and molecular detection of Escherichia coli efflux pumps from UTI patients
...Show More Authors

Scopus (5)
Scopus
Publication Date
Mon Apr 19 2010
Journal Name
Computer And Information Science
Quantitative Detection of Left Ventricular Wall Motion Abnormality by Two-Dimensional Echocardiography
...Show More Authors

Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Journal Of Global Pharma Technology
Detection of HBME-1 and galectin-3 by immunohistochemistry in follicular lesions
...Show More Authors

The main problem established by a discovery of a thyroid nodule is to discriminate between a benign and malignant lesion. Differential diagnosis between follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. A developing number of some encouraging IHC markers for the differential diagnosis of thyroid lesions have emerged, including, Hector Battifora mesothelial (HBME-1) and galectin-3 (Gal-3). There was significant positive correlation between Galectin-3 and HBME-1 in follicular carcinoma and follicular variant of papillary carcinoma (r= 0.380, P= 0.041) and (r= 0.315, P=0.047) respectively. There was no significant correlation between

... Show More
Scopus
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Apr 01 2025
Journal Name
Iop Conference Series: Earth And Environmental Science
Molecular Detection and Antiserum Preparation of Begomoviruses Infecting Zucchini Squash in Iraq
...Show More Authors
Abstract<p>Begomoviruses infecting zucchini squash were investigated. Leaf samples were collected from zucchini squash growing areas in Baghdad (Jhadryaa and Yusufiyah), Babylon (Jibela and Mahmudiyah) and Diyala (Khan Bani Saad) Provinces. Samples were screened for the presence of begomoviruses using polymerase chain reaction (PCR) and Deng genus specific primers. Sixteen out of 40 samples were begomovirus positive. Sequence analysis confirmed the detection of Tomato leaf curl Palampur virus (TLCPALV) <italic>Begomovirus solanumpalampurense</italic>, Squash leaf curl virus (SLCuV) <italic>B. cucurbitapeponis</italic> and Tomato yellow leaf curl virus (TYLCV) <italic>B. </italic></p> ... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
مجلة الأطروحة العلمية المحكمة-العلوم الصرفة والتطبيقية
Detection of Lead (Pb) and Cadmium (Cd) Concentrations in Some Indomie Samples
...Show More Authors

Publication Date
Tue Apr 01 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
The Impact of Feature Importance on Spoofing Attack Detection in IoT Environment
...Show More Authors

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sun May 11 2014
Journal Name
World Journal Of Experimental Biosciences
Detection of hydrolytic enzymes produced by Azospirillum brasiliense isolated from root soil
...Show More Authors

Publication Date
Sat Jan 02 2021
Journal Name
International Journal Of Pharmaceutical Research
Detection of Kaposi’s Associated Herpesvirus in Saliva of Drug Related Immunosupressed Patient
...Show More Authors

View Publication
Crossref