In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from the whole features set. Thus, it obtains efficient botnet detection results in terms of F-score, precision, detection rate, and number of relevant features, when compared with DT alone.
Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreObjective: To know the recent shifts in the decision-making process and theories and stages, techniques and systems affecting it.
The need for research coming because of the problems that accompany the decision as a result of the failure Sometimes, poor visualization or the narrow perspective of decision-making than miss the opportunity to choose alternatives or options of the most effective and appropriate to solve a problem.
And has received exceptional decision-making process in administrative studies and research to enable the organization to continue its activities and its high efficiency, especially successful that the decision depends on the future,
The clinical response to natalizumab in patients with multiple sclerosis (MS) may be significantly influenced by genetic variation. Mutations in genes related to the drug’s mechanism of action or the pathological milieu of MS can contribute substantially to interindividual differences in treatment outcomes. This review aims to provide an overview of previous studies that have examined genetic polymorphisms associated with the clinical efficacy of natalizumab. A systematic literature search was conducted across the PubMed, Google Scholar, and ResearchGate databases using targeted keywords relevant to the subject matter. Several genetic loci were found to be linked to natalizumab responsiveness, including the integrin subunit alpha 4 (ITGA4
... Show MoreAbstract
The objective of the research is to identify the role of innovative leadership in achieving the dimensions of administrative empowerment in the company for the public of food industries. The various variables have shown the importance of innovative leadership to achieve the dimensions of administrative empowerment in both international and local companies. Administrative Empowerment "In order to answer this question, a virtual model was developed to reflect the relationship and impact between innovative leadership and administrative empowerment. The research was based on the analytical descriptive approach. the research community, The company represented the general company for food industries, retrie
... Show MoreThe paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More