Preferred Language
Articles
/
H4YXtoYBIXToZYALQ7MI
Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns
...Show More Authors

Employing phase-change materials (PCM) is considered a very efficient and cost-effective option for addressing the mismatch between the energy supply and the demand. The high storage density, little temperature degradation, and ease of material processing register the PCM as a key candidate for the thermal energy storage system. However, the sluggish response rates during their melting and solidification processes limit their applications and consequently require the inclusion of heat transfer enhancers. This research aims to investigate the potential enhancement of circular fins on intensifying the PCM thermal response in a vertical triple-tube casing. Fin arrays of non-uniform dimensions and distinct distribution patterns were designed and investigated to determine the impact of modifying the fin geometric characteristics and distribution patterns in various spatial zones of the heat exchanger. Parametric analysis on the various fin structures under consideration was carried out to determine the most optimal fin structure from the perspective of the transient melting evolution and heat storage rates while maintaining the same design limitations of fin material and volume usage. The results revealed that changing the fin dimensions with the heat-flow direction results in a faster charging rate, a higher storage rate, and a more uniform temperature distribution when compared to a uniform fin size. The time required to fully charge the storage system (fully melting of the PCM) was found to be reduced by up to 10.4%, and the heat storage rate can be improved by up to 9.3% compared to the reference case of uniform fin sizes within the same fin volume limitations.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Nov 28 2018
Journal Name
Al-khwarizmi Engineering Journal
Effect of Using Combined Square Nozzle & winglet with Helical Tape on Thermal Characteristics in Tube Heat Exchanger
...Show More Authors

Influence of combined square nozzle with helical tape inserted in a constant heat flux tube on heat transfer enhancement for turbulent airflow for Reynolds number ranging from 7000 to 14500 were investigated experimentally. Three different pitch ratios for square nozzle (PR = 5.8, 7.7 and 11.6) according to three different numbers of square nozzle (N = 3, 4 and 5) and constant pitch ratios for helical tape were used. The results observed that the Nusselt number and friction factor for combination with winglets were found to be up to 33.8 % and 21.4 %, respectively higher than nozzle alone for pitch ratio PR=5.8. The maximum value of thermal performance for using combination with winglets was about 1.351 for pitch ratio= 5.8. Nusselt numb

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 03 2018
Journal Name
Al-khwarizmi Engineering Journal
Recovery of Aluminum from Industrial Waste (Slag) by Melting and Electrorefining Processes
...Show More Authors

Slag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Jurnal Teknologi
HEAT TRANSFER ENHANCEMENT USING PASSIVE TECHNIQUE: REVIEW
...Show More Authors

Preserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue May 03 2022
Journal Name
Teikyo Medical Journal
Tooth agenesis and palatal dimensions associated with craniofacial deformity- Cone Beam Computed Tomography based study
...Show More Authors

Cleft / palate is one of the common congenital deformities in craniofacial region, associated with different types of dental anomalies like (Tooth agenesis, impaction, and supernumerary teeth) with marked changes in palatal dimensions. This study aimed to determine the prevalence of teeth agenesis and dental anomalies in cleft lip/palate patients using CBCT, and to compare the palatal dimension of cleft group with control subjects. Twenty-eight cleft cases collected during the period from 2015 to 2022, CBCT images evaluated, the study sample classified into two groups (14 bilateral and 14 unilateral cleft lip/palate) and the non-cleft control group (14 CBCT images). The presence of dental anomalies was assessed in relation to clef

... Show More
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Experimental Investigation of Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Compound Technique of Transverse Vibration and Inclination Angle
...Show More Authors

Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Engineering
Analysis of Shell and Double Concentric Tube Heat Exchanger Using CFD Application
...Show More Authors

This study focuses on CFD analysis in the field of the shell and double concentric tube heat exchanger. A commercial CFD package was used to resolve the flow and temperature fields inside the shell and tubes of the heat exchanger used. Simulations by CFD are performed for the single shell and double concentric tube.

This heat exchanger included 16 tubes and 20 baffles. The shell had a length of 1.18 m and its diameter was 220 mm. Solid Works 2014, ANSYS 15.0 software was used to analyze the fields of flow and temperature inside the shell and the tubes. The RNG k-ε model was used and it provided good results. Coarse and fine meshes were investigated, showing that aspect ratio has no significant effect. 14 million

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Applied Energy
Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins
...Show More Authors

View Publication
Scopus (289)
Crossref (271)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Heating and Melting Model Induced by Laser Beam in Solid Material
...Show More Authors

An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by  laser irradiation is in good agreement with numerical results.

View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Temperatures Distribution and Residual Stresses of High Melting Temperature Polymer
...Show More Authors

This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
CFD Simulation of Air Flow Patterns in a Spray Dryer Fitted With a Rotary Disk
...Show More Authors

The air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and  air velocity at the inlet of  5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow

... Show More
View Publication Preview PDF