Preferred Language
Articles
/
H0L_6JoBMeyNPGM3mtYF
Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine Learning-SPIKE Model
...Show More Authors

Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they account for the vast bulk of traffic in data center networks. The incorrect use of network resources by EFs frequently disturbs the performance of MFs. To meet these issues, precise classification of network traffic has become crucial. This classification enables traffic-aware routing techniques. This paper offers a novel model for classifying SDN traffic into MF and EF using a spike neural network. Once identified, traffic is routed based on the classification results. For MF, the model uses the Dijkstra algorithm. For EF, the Widest Dijkstra algorithm is used. This model solves the difficulties of traffic heterogeneity in SDNs by integrating advanced classification techniques and strategic routing algorithms. It enables desirable resource allocation, eliminates congestion, and increases network performance and dependability. The models used have proven their efficiency by outperforming the traditional Software Defined Network and other algorithms in terms of: throughput by 60%, and 20%, bandwidth utilization by 5%, and 7%, packet loss by 50%, and latency by 60%, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 28 2019
Journal Name
Journal Of The College Of Education For Women
Apply the gravity model for trips between Najaf center and its settlements
...Show More Authors

The study showed flow rates and the interaction between the settlements served by applying the model of gravity theory to measure depending on the number of the population between city Najaf and the rest of the other settlements served and using three functions of disability, time and cost, as recorded an increase in the interaction index with some settlements like them Kufa, Abbasid and Manathira, while the indicator contrast was in other settlements, either when the application of the gravity model depending on trips and socio-economic characteristics accuracy rate was more pronounced.

View Publication Preview PDF
Publication Date
Tue Jun 18 2024
Journal Name
Al-bahir
Organization of Traffic on the Main Streets Microcontroller Traffic Lights
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jun 18 2024
Journal Name
Al-bahir Journal For Engineering And Pure Sciences
Organization of Traffic on the Main Streets Microcontroller Traffic Lights
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Bulletin Of Electrical Engineering And Informatics
Proposed model for data protection in information systems of government institutions
...Show More Authors

Information systems and data exchange between government institutions are growing rapidly around the world, and with it, the threats to information within government departments are growing. In recent years, research into the development and construction of secure information systems in government institutions seems to be very effective. Based on information system principles, this study proposes a model for providing and evaluating security for all of the departments of government institutions. The requirements of any information system begin with the organization's surroundings and objectives. Most prior techniques did not take into account the organizational component on which the information system runs, despite the relevance of

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Steganography and Cryptography Techniques Based Secure Data Transferring Through Public Network Channel
...Show More Authors

Attacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover.  The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Sep 14 2023
Journal Name
Al-khwarizmi Engineering Journal
Applying Scikit-learn of Machine Learning to Predict Consumed Energy in Al-Khwarizmi College of Engineering, Baghdad, Iraq
...Show More Authors

Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati

... Show More
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Sat Apr 27 2019
Journal Name
Civil Engineering Journal
Characteristics of Traffic Accidents in Baghdad
...Show More Authors

Road traffic accidents (RTAs) are events that suddenly, inadvertently and unexpectedly occur under unforeseen circumstances that involve at least one moving vehicle and result in one or more road users being killed or injured. Unfortunately, Iraqi governorates suffer from higher rates of traffic accident casualties compared with the rates of casualties from terrorist attacks; this situation reveals a serious and growing problem. Road traffic accidents are not easy to eradicate. However, their prevalence can be reduced to the barest minimum via periodic assessments of traffic accident characteristics and the most important aspects for road authorities to consider when designing and evaluating the performance of a road to improve traf

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Hydrology
Complementary data-intelligence model for river flow simulation
...Show More Authors

View Publication
Crossref (88)
Crossref