Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.
The reduction of vibration properties for composite material (woven roving E-glass fiber plies in thermosetting polyester matrix) is investigated at the prediction time under varied combined temperatures (60 to -15) using three types of boundary conditions like (CFCF, CCCF, and CFCC). The vibration properties are the amplitude, natural frequency, dynamic elastic moduli (young modulus in x, y directions and shear modulus in 1, 2 plane) and damping factor. The natural frequency of a system is a function of its elastic properties, dimensions, and mass. The woven roving glass fiber has been especially engineered for polymer reinforcement; but the unsaturated thermosetting polyester is widely used, offering a good balance of vibration p
... Show MoreSewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos
... Show MoreObjective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B
... Show MoreThe high mobility group A1 gene (HMGA1) rs139876191 variant has been related to metabolic syndrome and type 2 diabetes, but data are lacking in Middle Eastern populations. The study aimed to assess whether the HMGA1 rs139876191 variant is associated with metabolic syndrome risk and whether this variant predicts the risk of insulin resistance. This case-control study was carried out at single center in Kirkuk city/ Iraq from February to August 2022. Polymorphisms in HMGA1 and genotyping were identified by Sanger sequencing of genomic DNA obtained from 91 Iraqi participants (61 patients with metabolic syndrome and 30 control). Lipid profile, serum (glucose and insulin), glycated hemoglobin, blood pressure, body mass index, and waist circumfer
... Show MoreObjective: To assess the role of tumour necrosis factor alpha level and genotyping in susceptibility to leishmaniasis.Method: The case-control study was conducted from March to July 2021 at Baqubah Teaching Hospital, Diyala, Iraq,and comprised patients of cutaneous leishmaniasis in group A and healthy controls in group B. The serum level andsingle nucleotide polymorphisms of tumour necrosis factor-alpha rs41297589 and rs1800629 were compared betweenthe groups. Data was analysed using SPSS 28.Results: Of the 150 subjects, there were 75(50%) in group A; 39(52%) males and 36(48%) females with mean age23.91±13.14 years. The remaining 75(50%) subjects were in group B; 38(50.7%) males and 37(49.3%) females withmean age 22.84±4.35 years.
... Show MoreAim of the present study is Identification of specific gene for GPCR using specific primers .and identification of difference in PCR analysis in patients with heart thrombosis and compared with healthy, Sequencing of PCR product regarding GPCR compared for all three subject, Identification the similarity of human GPCR with local strain of yeast fifty healthy control and fifty patients with thrombosis which diagnosed medically with cardiac specific troponin t, troponin 1 levels and electro myocardiogram ECG. The aged for all subjects ranged (39-75) years patients were lying in cardiac care unit at Ibn- al- Nafees teaching hospital and Sheikh Zayed teaching hospital. Genomic DNA of whole blood was extracted from buffy coat and cell cu
... Show More