Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.
To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThis paper describes a research effort that aims of developing solar models for housing suitable for the Arabian region since the Arabian Peninsula is excelled with very high levels of solar radiation.
The current paper is focused on achieving energy efficiency through utilizing solar energy and conserving energy. This task can be accomplished by implementation the major elements related to energy efficiency in housing design , such as embark on an optimum photovoltaic system orientation to maximize seize solar energy and produce solar electricity. All the precautions were taken to minimizing the consumption of solar energy for providing the suitable air-condition to the inhibitor of the solar house in addition to use of energy effici
Successfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreTo maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show More