Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.
Background. Gene polymorphisms affect etanercept’s pharmacokinetics, pharmacodynamics, and side effects. This effect is evidenced by the extensive genetic variation in the drug’s targets. Objectives. This study aims to find the association between different genotypes of the promoter region of the TNF-α gene at -308G/A(rs1800629), -857C/T(rs1799724), -863 C/A(rs1800630), -1031 T/C (rs1799964), -806 C/T (rs4248158) and -376 G/A (rs1800750) and the side effects of ETN that occurred to Iraqi RA patients. Method. The trial included patients with rheumatoid arthritis who had been using ETN for at least six months. The participants were from the Baghdad Teaching Hospital Rheumatology Unit. The PCR was sequenced to determine the polymo
... Show MoreBackground: Enforcement of sustainable and green chemistry protocols has seen colossal surge in recent times, the development of an effective, eco-friendly, simple and novel methodologies towards the synthesis of valuable synthetic scaffolds and drug intermediates. Recent advances in technology have now a more efficient means of heating reactions that made microwave energy. Efforts to synthesize novel heterocyclic molecules of biological importance are in continuation. Microwave irradiation is well known to promote the synthesis of a variety of organic and inorganic compounds. The aim of current study was to conceivea mild base mediated preparation of novel Schiff base of 2-Acetylpheno with trimethoprim drug (H2TPBD) and its complexes w
... Show MoreBreast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer deaths worldwide. This work was conducted to estimate the roles of oxidative stress, vitamin B12, homocysteine (HCY), and DNA methylation in BC disease progression. Sixty BC patients (age range 33–80 years) and 30 healthy controls were recruited for this study. Patients with BC were split to group 1 consisted of stage II BC women (low level), and group 2 consisted of patients in stages III and IV (high level). Malondialdehyde (MDA), glutathione peroxidase 3 (GPX3), HCY, and vitamin B12 levels in the study groups were measured. Also, the 5-methylcytosine (5mC) global DNA methylation levels were evaluated. The results showed a significant
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
This paper aims to study the damage generated due to creep-fatigue interaction behaviors in solid polyamide 6,6 and its composites that include 1%wt of carbon nanotubes or 30% wt short carbon fiber prepared by an injection technique. The investigation also includes studying the influence of applied temperatures higher than the glass transition temperatures on mechanical properties. The obtained results showed that the addition of reinforcement materials increased all the mechanical properties, while the increase in test temperature reduced all mechanical properties, especially for polyamide 6,6. The creep-fatigue interaction resistance also improved due to the addition of reinforcement materials by inc
... Show MoreThis work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreGas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie