The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreMulti-spectral satellite images of the Landsat satellite by the tow sensitive Thematic Mapper (TM) and Thematic Mapper Enhancement (ETM+), which covered the study area located south east of Iraq. In this research; used the sixth thermal spectral band (Thermal Band) for study the water cover in the AlRazzaza Lake located within the province of Karbala. We intended to study the cover a case of the study area, used satellite images showing the status of region during the period from 1990 to 2001 and 2007. From this study we conclude that cover the water of the study area change in sequence case to decrease during these years.
Multi-spectral satellite images of the Landsat satellite by the tow sensitive Thematic Mapper (TM) and Thematic Mapper Enhancement (ETM+), which covered the study area located south east of Iraq. In this research; used the sixth thermal spectral band (Thermal Band) for study the water cover in the Al-Razzaza Lake located within the province of Karbala. We intended to study the cover a case of the study area, used satellite images showing the status of region during the period from 1990 to 2001 and 2007. From this study we conclude that cover the water of the study area change in sequence case to decrease during these years.
In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func
... Show MoreThis paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreThe objective of this research is to study experimentally and theoretically the girder vertical load share of the curved I-Girder bridges subjected to the point load in addition to the self-weigh and supper imposed dead loads. The experimental program consist of manufacturing and testing the five simply supported bridge models was scaled down by (1/10) from a prototype of 30m central span. The models carriageway central radii are 30 m, 15m or 10m. The girder spacing of the first two models is 175 mm with an overall carriageway width of 650mm. The girder spacing of the other three bridge models is 200mm with the overall carriageway width of 700 mm. The overall depth of the composite section was 164 mm. To investigate the effect of live load
... Show MoreIn this research was the study of the educational values when Shafei, contained in hair Shafi'i, and that what the role of these values in the education of generations, and the possibility of their application in the educational curriculum. Find addressed Shafei life and his time. The values derived from his hair, as well as quoting from the Koran and influenced by it, which is evident in the hair, governance and eating Alomthal.okzlk Find the importance of this thought in modern education, so as to realism and ease of application. It is the search results, the Shafi'i put thought educationally integral based on the Koran rise to the level of theory. Find and conclusions: that education in its present situation
... Show More