We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
The purpose of this paper is to study new types of open sets in bitopological spaces. We shall introduce the concepts of L- pre-open and L-semi-p-open sets
In this work, the notion is defined by using and some properties of this set are studied also, and Ù€ set are two concepts that are defined by using ; many examples have been cited to indicate that the reverse of the propositions and remarks is not achieved. In addition, new application example of nano was studied.
The main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
As the bit rate of fiber optic transmission systems is increased to more than , the system will suffer from an important random phenomena, which is called polarization mode dispersion. This phenomenon contributes effectively to: increasing pulse width, power decreasing, time jittering, and shape distortion. The time jittering means that the pulse center will shift to left or right. So that, time jittering leads to interference between neighboring pulses. On the other hand, increasing bit period will prevent the possibility of sending high rates. In this paper, an accurate mathematical analysis to increase the rates of transmission, which contain all physical random variables that contribute to determine the transmission rates, is presen
... Show More In this paper,we construct complete (kn,n)-arcs in the projective plane PG(2,11), n = 2,3,…,10,11 by geometric method, with the related blocking sets and projective codes.
A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.
A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.
The purpose of this paper is to study a new class of fuzzy covering dimension functions, called fuzzy
In our research, we introduced new concepts, namely *and **-light mappings, after we knew *and **-totally disconnected mappings through the use of -open sets.
Many examples, facts, relationships and results have been given to support our work.
Background: Nasal obstruction is common in otorhinolaryngology outpatient visitors. The diagnosis of such compliant is by history, clinical examination and diagnostic procedures. Nasal endoscopy and computerized tomography scan are common diagnostic investigations. Nasal obstruction is either anterior or posterior (nasal septal deviations, hypertrophied turbinate pathological cyst, polyps, mass etc), or postnasal obstruction (hypertrophied turbinate, adenoid hypertrophy, nasopharyngeal cyst or nasopharyngeal tumors).
Aim of study: Prospective study to compare endoscopic finding and computerized tomography of nose, paranasal sinuses and postnasal space as diagnostic methods for nasal obstruction and other nose, p
... Show More