The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreResearchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The
... Show MoreGray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
In this paper the method of singular value decomposition is used to estimate the ridge parameter of ridge regression estimator which is an alternative to ordinary least squares estimator when the general linear regression model suffer from near multicollinearity.
The aim of the present research is to investigate the effecting of pH parameter on the feasibility of lead removal from simulated wastewater using an electrochemical system. Electrocoagulation method is one of electrochemical technology which is used widely to treat industrial wastewater. Parameters affecting this operation, such as initial metal concentration, applied current, stirrer speed, and contact time of electroprocessing were taken as 155ppm, 1.5 Ampere, 150 rpm, 60 minutes respectively. While pH of the simulated wastewater was in the range of 2 to 12 in the experiments. It was found from the results that pH is an important parameter affecting lead removal operation. The best value of pH parameter is appro
... Show MoreThis study was attempted to determine optimum conditions, for Glutathione s-Transferase enzyme, in sera of three groups diabetic patients type1 depending on duration of disease without complications compared with control group. The aim of this study was to find optimum conditions were determined such as (pH, Substrate Concentration, Temperature, Incubation time, Enzyme concentration, and effect of(0.15M)(0.25M) of mono divalent compounds). And to find the kinetics parameters in the three groups of diabetic patients when compared with control. It was found optimum pH(8.5,4.5,2.5,6.5).Temperatures(20cº,40cº,50cº,30cº). Incubation times (7min, 4min, 4min, 5min) substrate concentrations (12µl, 10µl, 5µl, 10µl) enzyme concentra
... Show MorePolycystic ovary syndrome (PCOS) referring to a syndrome that is recognized as a life-course disease and has both metabolic and reproductive signs; main pathophysiological cause includes insulin resistance, hyperandrogenism, and oxidative stress state. The study aimed to assess the impact of combining Myoinositol and Metformin, the main insulin-sensitizing drugs, on improving clinical, metabolic, and hormonal parameters in females with PCOS. A clinical trial that was prospective, randomized, and comparative on 54 patients (aged 18-40 y) are divided into three groups: group1 patients allocated to receive Myo-inositol(4g), group2 patients assigned to receive Metformin(1g) and group3 patients assigned to receive Myo-inositol(4g) + Metformin
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show More