Preferred Language
Articles
/
GheZh5IBVTCNdQwCRLMn
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.

Scopus Crossref
View Publication
Publication Date
Sat Feb 01 2020
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchical Fixed Prediction of Mixed based for Medical Image Compression.
...Show More Authors

Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Boundary & Geometric Region Features Image Segmentation for Quadtree Partitioning Scheme
...Show More Authors

In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.

Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
OFDM PAPR reduction for image transmission using improved tone reservation
...Show More Authors

High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with

... Show More
View Publication
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection
...Show More Authors

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
2019 International Joint Conference On Neural Networks (ijcnn)
A Fast Feature Extraction Algorithm for Image and Video Processing
...Show More Authors

View Publication
Scopus (38)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Tue May 15 2018
Pre‐low noise amplifier (LNA) filtering linearisation method for low‐power ultra‐wideband complementary metal oxide semiconductor LNA
...Show More Authors

View Publication
Crossref (3)
Clarivate Crossref
Publication Date
Tue Aug 14 2018
Journal Name
International Journal Of Engineering & Technology
Hybrid DWT-DCT compression algorithm & a new flipping block with an adaptive RLE method for high medical image compression ratio
...Show More Authors

Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig

... Show More
View Publication
Crossref
Publication Date
Sat Jun 29 2013
Journal Name
Wireless Personal Communications
A Low Cost Route Optimization Scheme for Cluster-Based Proxy MIPv6 Protocol
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Industrial Laboratory. Materials Diagnostics
OPTIMIZATION OF PLASMA-ASSISTED DESORPTION/IONIZATIONMASS SPECTROMETRY FOR ANALYSIS OF IBUPROFEN
...Show More Authors

In medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accur

... Show More
Preview PDF