Preferred Language
Articles
/
GheZh5IBVTCNdQwCRLMn
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.

Scopus Crossref
View Publication
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage-Bayesian Estimator for the Scale Parameter of Exponential Distribution
...Show More Authors

  This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations.         In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Bayes and Non-Bayes Estimation Methods for the Parameter of Maxwell-Boltzmann Distribution
...Show More Authors

In this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Quadrupole Moment & Deformation Parameter for Even-Even 38Sr (A=76-102) Nuclide
...Show More Authors

View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Experimental Comparison between Classical and Bayes Estimators for the Parameter of Exponential Distribution
...Show More Authors

This paper is interested in comparing the performance of the traditional methods to estimate parameter of exponential distribution (Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased Estimator) and the Bayes Estimator in the case of data to meet the requirement of exponential distribution and in the case away from the distribution due to the presence of outliers (contaminated values). Through the employment of simulation (Monte Carlo method) and the adoption of the mean square error (MSE) as criterion of statistical comparison between the performance of the three estimators for different sample sizes ranged between small, medium and large        (n=5,10,25,50,100) and different cases (wit

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Electrical glow discharges and plasma parameter of planar sputtering system for silver target
...Show More Authors

DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Discrete wavelet based estimator for the Hurst parameter of multivariate fractional Brownian motion
...Show More Authors
Abstract<p>In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.</p>
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Neuroquantology
Studying Effect of Temperature on Electron Transport Parameter and Coefficients in CF3I Mixture with N2O
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Games in ẛ- PRE- g- separation axioms
...Show More Authors

     The primary purpose of this subject is to define new games in ideal spaces via set. The relationships between games that provided and the winning and losing strategy for any player were elucidated.

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Posterior Estimates for the Parameter of the Poisson Distribution by Using Two Different Loss Functions
...Show More Authors

In this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2012
Journal Name
International Journal Of Contemporary Mathematical Sciences
Pre-Topology Generated by the Short Path Problems
...Show More Authors

Let G be a graph, each edge e of which is given a weight w(e). The shortest path problem is a path of minimum weight connecting two specified vertices a and b, and from it we have a pre-topology. Furthermore, we study the restriction and separators in pre-topology generated by the shortest path problems. Finally, we study the rate of liaison in pre-topology between two subgraphs. It is formally shown that the new distance measure is a metric

Preview PDF