The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
In this paper, the effect size measures was discussed, which are useful in many estimation processes for direct effect and its relation with indirect and total effects. In addition, an algorithm to calculate the suggested measure of effect size was suggested that represent the ratio of direct effect to the effect of the estimated parameter using the Regression equation of the dependent variable on the mediator variable without using the independent variable in the model. Where this an algorithm clear the possibility to use this regression equation in Mediation Analysis, where usually used the Mediator and independent variable together when the dependent variable regresses on them. Also this an algorithm to show how effect of the
... Show MoreThe presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreThe process of cognitive representation includes mental activities such as perception, concepts formation and decision making leading to formation of Cognitive representation where the need for Cognition is one of basic humane needs promoting individuals to have more information.
This Study aims to measure the level of Cognitive representation among gifted Schools, the level of need for Cognition among them, recognize statistical Significant differences with Cognitive representation according to gender Variable and recognize the Correlation between Cognitive representation and the need for Cognition among giftel schools . The sample Consists of subsample of mair application one Consisting of( 400) students, noting that the first sampl
This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
This paper reports a comprehensive study on the behavior of concavely curved soffit reinforced concrete (RC) beams strengthened in flexure with carbon fiber-reinforced polymer (CFRP) composites under static loading. The main objective of this paper is to explore the effect of surface concavity on the bond performance of externally bonded wet layup CFRP sheets and laminates. An experimental program consisting of flexural strengthening of 24 RC beams with concavely curved soffits was carried out. All specimens were simply supported RC beams tested under three-point bending. Of the 24 beams, 6 beams were flat soffit RC beams, and the remainder were fabricated with concavely curved soffits with a degree of curvature that is ranging from 5 mm/m
... Show MoreAn approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly