This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over 90%.
Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.
Orthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show MoreSoil suction is one of the most important parameters describing the moisture condition of unsaturated soils. The measurement of soil suction is crucial for applying the theories of the engineering behavior of unsaturated soils.
The filter paper method is one of the soil suction measurement techniques In this paper, five soil samples were collected from five sites within Baghdad city – al-Rasafa region. These soils have different properties and they were prepared at different degrees of saturation. For each sample, the total and matric suction were measured by the filter paper method at different degrees of saturation. Then correlations were made between the soil properties and the total and matric suction. It was concluded that the
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreSeveral recent approaches focused on the developing of traditional systems to measure the costs to meet the new environmental requirements, including Attributes Based Costing (ABCII). It is method of accounting is based on measuring the costs according to the Attributes that the product is designed on this basis and according to achievement levels of all the Attribute of the product attributes. This research provides the knowledge foundations of this approach and its role in the market-oriented compared to the Activity based costing as shown in steps to be followed to apply for this Approach. The research problem in the attempt to reach the most accurate Approach in the measurement of the cost of products from th
... Show MoreMobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth,
... Show MoreThis paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show More